EE123 Spring 2015 Discussion Section 10

Giulia Fanti (slides by Frank Ong)

Pole-zero

	Magnitude	Phase	Group delay
Poles	push up	go down	delay (positive)
Zeros	push down	go up	advance (negative)

Consider
$$h_1[n] = \begin{cases} 1 & |n| \le 1 \\ 0 & else \end{cases}$$

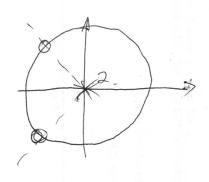
- Compute its z-transform and plot the poles and zeros
- Sketch its magnitude response

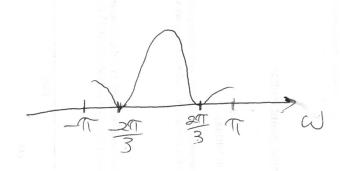
What about the pole zero diagram for

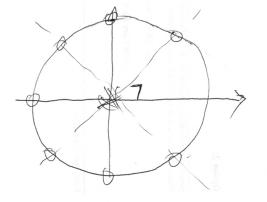
$$h_1[n] = \begin{cases} 1 & |n| \le 3 \\ 0 & else \end{cases}$$

$$H_3(z) = z + 1 + z^{-1} = z (1 + z^{-1} + z^{-2})$$

$$= z \frac{(1 - z^{-1})}{(1 - z^{-1})}$$



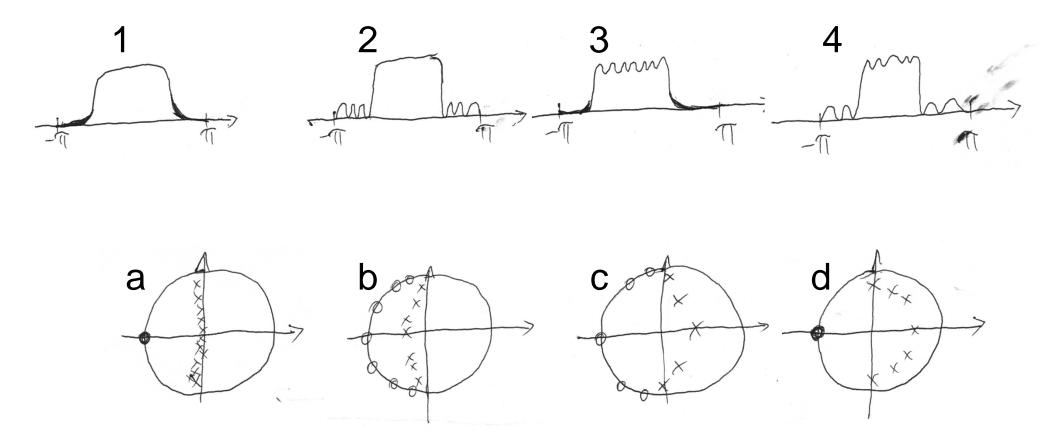


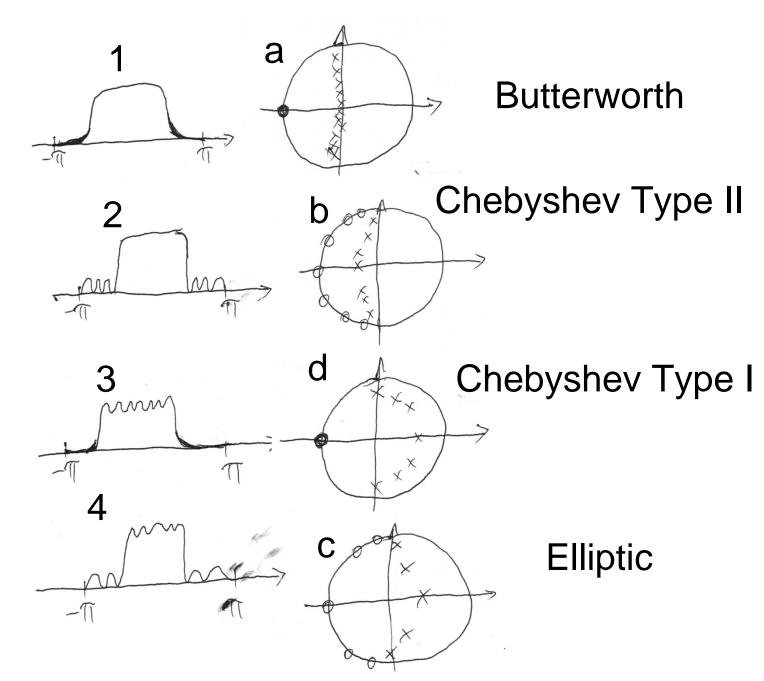


What is wrong with these pole-zero diagrams?

There should only be 1 and 3 poles at z=0, respectively

Match the following magnitude response to their pole-zero plot

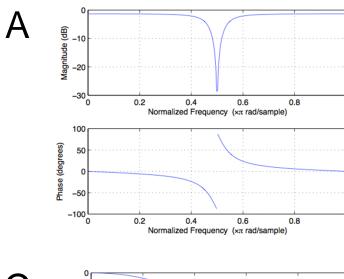


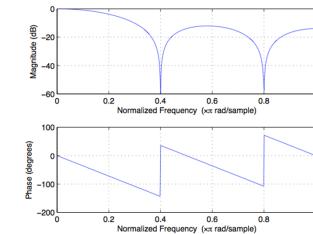


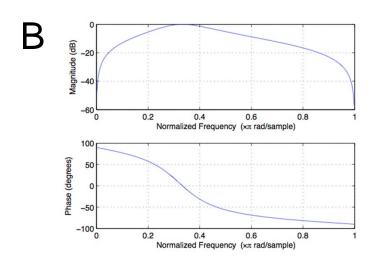
b) (10 points) Match the frequency responses below with the transfer functions:

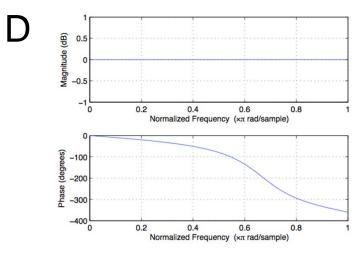
$$H_1(z) = 0.25 \frac{1 - z^{-2}}{1 - 0.75z^{-1} + 0.5z^{-2}} \quad H_2(z) = 0.75 \frac{1 + z^{-2}}{1 + 0.75z^{-2}}$$

$$H_3(z) = \frac{\frac{4}{9} + \frac{2}{3}z^{-1} + z^{-2}}{1 + \frac{2}{3}z^{-1} + \frac{4}{9}z^{-2}} \qquad H_4(z) = 0.2(1 + z^{-1} + z^{-2} + z^{-3} + z^{-4}).$$









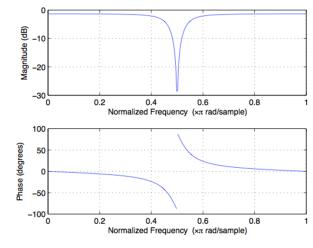
b) (10 points) Match the frequency responses below with the transfer functions:

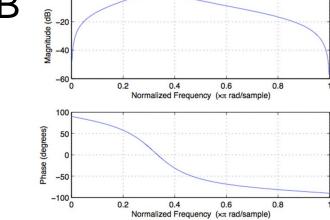
B
$$H_1(z) = 0.25 \frac{1-z^{-2}}{1-0.75z^{-1}+0.5z^{-2}}$$

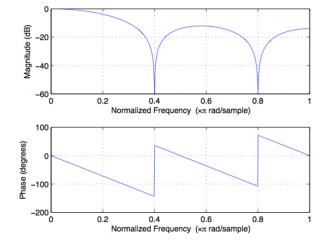
$$H_3(z) = \frac{\frac{4}{9} + \frac{2}{3}z^{-1} + z^{-2}}{1 + \frac{2}{2}z^{-1} + \frac{4}{2}z^{-2}}$$

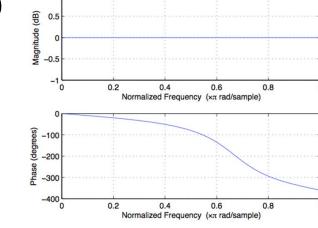
B
$$H_1(z) = 0.25 \frac{1-z^{-2}}{1-0.75z^{-1}+0.5z^{-2}}$$
 $H_2(z) = 0.75 \frac{1+z^{-2}}{1+0.75z^{-2}}$ A
D $H_3(z) = \frac{\frac{4}{9} + \frac{2}{3}z^{-1} + z^{-2}}{1+\frac{2}{3}z^{-1} + \frac{4}{9}z^{-2}}$ $H_4(z) = 0.2(1+z^{-1}+z^{-2}+z^{-3}+z^{-4})$. C

$$H_4(z) = 0.2(1 + z^{-1} + z^{-2} + z^{-3} + z^{-4}).$$







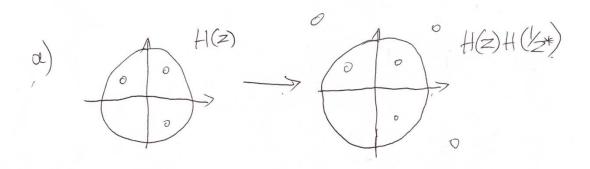


Consider the problem of reconstructing the signal from only its Fourier magnitude $|H(e^{jw})|^2$

- **a** How does the pole-zero plot of $|H(e^{jw})|^2$ look like compared to $H(e^{jw})$? Hint: the z-transform of $|H(e^{jw})|^2$ is $H(z)H^*(1/z)$
- b If the system h[n] is causal and stable, can you uniquely recover h[n] from $|H(e^{jw})|^2$
- C Assume that h[n] is causal and stable and that, in addition, you know that the system function has the form

$$H(z) = \frac{1}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

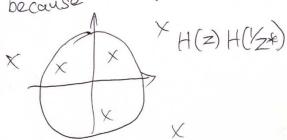
for some finite a_k . Can you uniquely recover h[n] from $|H(e^{jw})|^2$



- b) h[n] causal and stable does not help
 The above example is a counterexample.
- c) h[n] causal and stable + all pole system.

 can uniquely recover the signal.

 because



Consider the linear time-invariant discrete-time system represented by the rational system function

$$H(z) = \frac{1}{1 - \alpha z^{-N}}$$

- a) How many poles are there in this system?
- b) Write the corresponding difference equation and sketch the system (i.e., adders, multipliers, and delays).
- c) If the sampling rate is 16 kHz, N = 16000, $\alpha = .5$, and the input is a short speech segment of someone saying "ba", what would the output sound like (assuming all the necessary machinery like antialiasing filters, A/D, D/A, etc.)?
- d) For N=4, α slightly less than 1, sketch the frequency response.

a)
$$H(z) = \frac{1}{1-\alpha z^{N}}$$

Poles: $z = \alpha e^{j\frac{2\pi}{N}k}$ $k = 0, N-1$
[N poles].
b) $y[n] - \alpha y[n-N] = \alpha[n]$
 $\alpha = [z]$

c) Assuming "ba" lasts less than I second.

that means it tooks less than.

16000 samples time. Since y[n]=x[n]+x.y[n-160]

=> ba ba ba ba ba ba ...-

