EE123 Discussion Section 2

Giulia Fanti, based on notes by Frank Ong

January 28, 2015

General

Office hours: Thursdays 5-6pm Cory 212 Questions about homework1 / lab0?

Question 1

Let L_{1} and L_{2} be two separate systems and L be the cascaded system:

Determine whether each of following statements is true or false:

- If L_{1} is LTI and L_{2} is not LTI, then L cannot be LTI
- If L_{1} is not LTI and L_{2} is not LTI, then L cannot be LTI

Solution 1

Determine whether each of following statements is true or false:

- If L_{1} is LTI and L_{2} is not LTI, then L cannot be LTI False
Consider the system $L_{1}=0 . L=0$
- If L_{1} is not LTI and L_{2} is not LTI, then L cannot be LTI False
Consider the systems $L_{1}\{x\}=x^{3}$ and $L_{2}\{x\}=x^{1 / 3} . L=I$

Question 2 (From old exam)

A discrete-time system H produces a corresponding output signal y that is the symmetric part of the input. That is,

$$
y[n]=\frac{x[n]+x[-n]}{2}
$$

Select the strongest true assertion from the list below.

- The system must be an LTI system.
- The system could be an LTI system, but does not have to be.
- The system cannot be an LTI system.

Solution 2 (From old exam)

A discrete-time system H produces a corresponding output signal y that is the symmetric part of the input. That is,

$$
y[n]=\frac{x[n]+x[-n]}{2}
$$

Select the strongest true assertion from the list below.

- The system must be an LTI system.
- The system could be an LTI system, but does not have to be.
- The system cannot be an LTI system.

Solution 2 cont'd (From old exam)

Not Time Invariant, counterexample:

- Consider $x_{1}[n]=\delta[n]$, then $y_{1}[n]=\delta[n]$.
- But for $x_{2}[n]=\delta[n-1], y_{2}[n]=\frac{\delta[n-1]+\delta[n+1]}{2} \neq y_{1}[n-1]$.
- Hence, H is not an TI

However, the system is linear

Question 3

What is the Discrete-Time Fourier transform $X\left(e^{j \omega}\right)$ of the below signal $x[n]$:

(Hint: $x[n]$ is a convolution of two signals)

Solution 3

$x[n]=r[n] * r[n]$, where $r[n]$ is the periodic sinc

Hence using the convolution property, $X\left(e^{j \omega}\right)=R\left(e^{j \omega}\right)^{2}=\left(\frac{\sin [\omega(3 / 2)]}{\sin (\omega / 2)}\right)^{2}$

Solution 3

Normalized magnitude response for $X\left(e^{j \omega}\right)$ and $R\left(e^{j \omega}\right)$

Solution 3

These signals are known as splines. In the continuous domain, the generalizations are called B-splines, which converges to a Gaussian in the limit (Unser 1999). They are often useful in interpolation.

Question 4 (From old exam)

Consider a system that produces the output:

$$
y[n]=\cos \left(\frac{\pi}{4} n\right)
$$

in response to the input signal x,

$$
x[n]=e^{j \pi n / 4}
$$

Select the strongest true assertion from the list below:

- The system must be LTI
- The system could be LTI, but does not have to be
- The system cannot be LTI

Solution 4 (From old exam)

Consider a system that produces the output:

$$
y[n]=\cos \left(\frac{\pi}{4} n\right)
$$

in response to the input signal x,

$$
x[n]=e^{j \pi n / 4}
$$

Select the strongest true assertion from the list below:

- The system must be LTI
- The system could be LTI, but does not have to be
- The system cannot be LTI

Because the output contains a pure tone $e^{-j \pi n / 4}$ that is not present in the input.

Question 5a (From old exam)

For each of the following systems, determine if the system is linear, causal, shift-invariant and BIBO stable. Indicate \mathbf{Y} for Yes, \mathbf{N} for No or \mathbf{X} for cannot be determined

- $y[n]=\cos (\sqrt{|n|}) x[n]$
- Linear?
- Causal?
- Shift-Invariant?
- Stable?

Solution 5a (From old exam)

For each of the following systems, determine if the system is linear, causal, shift-invariant and BIBO stable. Indicate \mathbf{Y} for Yes, \mathbf{N} for No or \mathbf{X} for cannot be determined

- $y[n]=\cos (\sqrt{|n|}) \times[n]$
- Linear? Y
- Causal? Y
- Shift-Invariant? N
- Stable? Y

Question 5b (From old exam)

For each of the following systems, determine if the system is linear, causal, shift-invariant and BIBO stable.
Indicate \mathbf{Y} for Yes, \mathbf{N} for No or \mathbf{X} for cannot be determined

- The response of the system to an input of $\delta[n-1]$ is $(0.5)^{n} u[n]$
- Linear?
- Causal?
- Shift-Invariant?
- Stable?

Solution 5b (From old exam)

- The response of the system to an input of $\delta[n-1]$ is $(0.5)^{n} u[n]$
- Linear? X
- Causal? X
- Shift-Invariant? X
- Stable? X
- Consider the system with impulse response $h[n]=(0.5)^{n+1} u[n+1]$
\Rightarrow linear, not causal, shift-invariant and stable
- Consider the system that outputs (0.5) $n u[n]$ regardless of input \Rightarrow not linear, causal, shift-invariant and stable
- Consider the system that outputs $(0.5)^{n} u[n]$ when the input is $\delta[n-1]$ and ∞ otherwise
\Rightarrow not linear, not causal, not shift-invariant and not stable

Homework Problem 7

In problem 7, you are asked to do a local quadratic polynomial regression for each n. The problem can be formulated as a least squares problem, in which you want to fit your parameters to many data.

Homework Problem 7

Example: Linear regression. We observe 5 data points $x[k]$ from $k=-2,-1, \ldots, 1,2$.
We want to fit a line $x=m k+b$ by minimizing the squared distance between the line and the data points

Homework Problem 7

For $k=2$, the squared distance is given by $(b+2 m-x[2])^{2}$. If you write the equations out and put them in a matrix form, you get:

$$
\min _{b, m}\left\|K\binom{b}{m}-\left(\begin{array}{c}
x[-2] \\
x[-1] \\
x[0] \\
x[1] \\
x[2]
\end{array}\right)\right\|_{2}^{2}
$$

Homework Problem 7

To solve for b and m, take the "derivative" with respect to b and m and set it to zero:

$$
\begin{aligned}
& K^{T}\left(K\binom{b}{m}-\left(\begin{array}{c}
x[-2] \\
x[-1] \\
x[0] \\
x[1] \\
x[2]
\end{array}\right)\right)=0 \\
& \Rightarrow\binom{b}{m}=\left(K^{T} K\right)^{-1} K^{T}\left(\begin{array}{c}
x[-2] \\
x[-1] \\
x[0] \\
x[1] \\
x[2]
\end{array}\right)
\end{aligned}
$$

Homework Problem 7

This is how you find inverses in python:
K = np.matrix ([...])
K_inv = np.linalg.inv(K.transpose() * K) * K.transpose()

