EE123 Discussion Section 2

Giulia Fanti, based on notes by Frank Ong

January 28, 2015

- - 4 回 ト - 4 回 ト

æ

Giulia Fanti, based on notes by Frank Ong EE123 Discussion Section 2

Office hours: Thursdays 5-6pm Cory 212 Questions about homework1 / lab0?

Giulia Fanti, based on notes by Frank Ong EE123 Discussion Section 2

イロト イヨト イヨト イヨト

æ

Question 1

Let L_1 and L_2 be two separate systems and L be the cascaded system:

Determine whether each of following statements is true or false:

- If L_1 is LTI and L_2 is not LTI, then L cannot be LTI
- If L_1 is not LTI and L_2 is not LTI, then L cannot be LTI

- 4 同 6 4 日 6 4 日 6

Solution 1

Determine whether each of following statements is true or false:

If L₁ is LTI and L₂ is not LTI, then L cannot be LTI False

Consider the system $L_1 = 0$. L = 0

If L₁ is not LTI and L₂ is not LTI, then L cannot be LTI False

Consider the systems $L_1\{x\} = x^3$ and $L_2\{x\} = x^{1/3}$. L = I

・ロト ・回ト ・ヨト ・ヨト

Question 2 (From old exam)

A discrete-time system H produces a corresponding output signal y that is the symmetric part of the input. That is,

$$y[n] = \frac{x[n] + x[-n]}{2}$$

Select the strongest true assertion from the list below.

- The system must be an LTI system.
- ► The system could be an LTI system, but does not have to be.

向下 イヨト イヨト

• The system cannot be an LTI system.

Solution 2 (From old exam)

A discrete-time system H produces a corresponding output signal y that is the symmetric part of the input. That is,

$$y[n] = \frac{x[n] + x[-n]}{2}$$

Select the strongest true assertion from the list below.

- The system must be an LTI system.
- ► The system could be an LTI system, but does not have to be.

伺下 イヨト イヨト

• The system cannot be an LTI system.

Solution 2 cont'd (From old exam)

Not Time Invariant, counterexample:

• Consider $x_1[n] = \delta[n]$, then $y_1[n] = \delta[n]$.

• But for
$$x_2[n] = \delta[n-1]$$
, $y_2[n] = \frac{\delta[n-1] + \delta[n+1]}{2} \neq y_1[n-1]$

Hence, H is not an TI

However, the system is linear

★ 문 ► ★ 문 ►

Question 3

What is the Discrete-Time Fourier transform $X(e^{j\omega})$ of the below signal x[n]:

★ 문 → ★ 문 →

(Hint: x[n] is a convolution of two signals)

Solution 3

x[n] = r[n] * r[n], where r[n] is the periodic sinc

Hence using the convolution property, $X(e^{j\omega}) = R(e^{j\omega})^2 = (\frac{\sin[\omega(3/2)]}{\sin(\omega/2)})^2$

Solution 3

Normalized magnitude response for $X(e^{j\omega})$ and $R(e^{j\omega})$

(1日) (1日) (日)

Э

Solution 3

These signals are known as splines. In the continuous domain, the generalizations are called B-splines, which converges to a Gaussian in the limit (Unser 1999). They are often useful in interpolation.

イロト イヨト イヨト イヨト

Question 4 (From old exam)

Consider a system that produces the output:

$$y[n] = \cos(\frac{\pi}{4}n)$$

in response to the input signal x,

$$x[n] = e^{j\pi n/4}$$

Select the strongest true assertion from the list below:

- The system must be LTI
- The system could be LTI, but does not have to be
- The system cannot be LTI

A B K A B K

Solution 4 (From old exam)

Consider a system that produces the output:

$$y[n] = \cos(\frac{\pi}{4}n)$$

in response to the input signal x,

$$x[n] = e^{j\pi n/4}$$

Select the strongest true assertion from the list below:

- The system must be LTI
- The system could be LTI, but does not have to be

The system cannot be LTI

Because the output contains a pure tone $e^{-j\pi n/4}$ that is not present in the input.

A B K A B K

Question 5a (From old exam)

For each of the following systems, determine if the system is linear, causal, shift-invariant and BIBO stable. Indicate \mathbf{Y} for Yes, \mathbf{N} for No or \mathbf{X} for cannot be determined

- $y[n] = \cos(\sqrt{|n|})x[n]$
 - Linear?
 - Causal?
 - Shift-Invariant?
 - Stable?

白 と く ヨ と く ヨ と …

Solution 5a (From old exam)

For each of the following systems, determine if the system is linear, causal, shift-invariant and BIBO stable. Indicate \mathbf{Y} for Yes. \mathbf{N} for No or \mathbf{X} for cannot be determined

- ► $y[n] = \cos(\sqrt{|n|})x[n]$
 - Linear? Y
 - Causal? Y
 - Shift-Invariant? N
 - Stable? Y

> < 프 > < 프 >

Question 5b (From old exam)

For each of the following systems, determine if the system is linear, causal, shift-invariant and BIBO stable. Indicate \mathbf{Y} for Yes, \mathbf{N} for No or \mathbf{X} for cannot be determined

- ► The response of the system to an input of δ[n 1] is (0.5)ⁿu[n]
 - Linear?
 - Causal?
 - Shift-Invariant?
 - Stable?

個 と く ヨ と く ヨ と …

Solution 5b (From old exam)

- The response of the system to an input of δ[n − 1] is (0.5)ⁿu[n]
 - Linear? X
 - Causal? X
 - Shift-Invariant? X
 - Stable? X
 - Consider the system with impulse response h[n] = (0.5)ⁿ⁺¹u[n + 1] ⇒ linear, not causal, shift-invariant and stable
 - Consider the system that outputs (0.5)ⁿu[n] regardless of input ⇒ not linear, causal, shift-invariant and stable
 - Consider the system that outputs $(0.5)^n u[n]$ when the input is $\delta[n-1]$ and ∞ otherwise

 \Rightarrow not linear, not causal, not shift-invariant and not stable

(4回) (1日) (日)

Homework Problem 7

In problem 7, you are asked to do a local quadratic polynomial regression for each *n*. The problem can be formulated as a **least squares problem**, in which you want to fit your parameters to many data.

→ E → < E →</p>

Homework Problem 7

Example: Linear regression. We observe 5 data points x[k] from $k = -2, -1, \dots, 1, 2$.

We want to fit a line x = mk + b by minimizing the squared distance between the line and the data points

Giulia Fanti, based on notes by Frank Ong EE123 Discussion Section 2

Homework Problem 7

For k = 2, the squared distance is given by $(b + 2m - x[2])^2$. If you write the equations out and put them in a matrix form, you get:

$$\min_{b,m} \| K \begin{pmatrix} b \\ m \end{pmatrix} - \begin{pmatrix} x[-2] \\ x[-1] \\ x[0] \\ x[1] \\ x[2] \end{pmatrix} \|_2^2$$

個 と く ヨ と く ヨ と

Homework Problem 7

To solve for b and m, take the "derivative" with respect to b and m and set it to zero:

$$\begin{aligned} \kappa^{T}(\kappa\begin{pmatrix} b\\m \end{pmatrix}) - \begin{pmatrix} x[-2]\\x[-1]\\x[0]\\x[1]\\x[2] \end{pmatrix}) &= 0\\ \Rightarrow \begin{pmatrix} b\\m \end{pmatrix} = (\kappa^{T}\kappa)^{-1}\kappa^{T}\begin{pmatrix} x[-2]\\x[-1]\\x[0]\\x[1]\\x[2] \end{pmatrix}\end{aligned}$$

< 注▶ < 注▶ -

< 🗇 🕨

æ

Homework Problem 7

This is how you find inverses in python:

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ