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Plan

I Recap of the DFT

I Practice problems for the DFT

I (If there’s time) Gauss and the history of FFT and sparse FFT
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The Discrete Fourier Transform

X [k] =
N−1∑
n=0

x [n]W kn
N

x [n] =
1

N

N−1∑
n=0

X [k]W−kn
N

Equivalent interpretations of the DFT:

I Sampling the DTFT at ω = 2π
N k

I The DTFT of periodically extended signal

I Sampling the z-transform at z = e j
2π
N
k
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Question 1

x [n] = {−3, 5, 4,−1,−9,−6,−8, 2}

I a) Evaluate
∑7

k=0(−1)kX [k]

I b) Evaluate
∑7

k=0 |X [k]|2
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Solution 1

I part a)

x [4] =
1

8

7∑
k=0

(−1)kX [k]

⇒
7∑

k=0

(−1)kX [k] = 8x [4] = −72

I part b)
By Parseval’s Theorem:

7∑
k=0

|X [k]|2 = 8
7∑

n=0

|x [n]|2 = 1888
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Question 2

X [k] is the 9-point DFT of x [n]

I Given:

X [0] = −j ,X [2] = 1−j ,X [3] = 2−j ,X [5] = 3−j ,X [8] = 4−j

Determine the remaining 4 samples with the following
assumptions:

I x [n] is real

I x [n] is symmetric

I x [n] is conjugate symmetric
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Solution 2

I x [n] is real, then X [k] is conjugate symmetric, so

X [1] = X ∗[9−1] = 4+j ,X [4] = 3+j ,X [6] = 2+j ,X [7] = 1+j

BUT we also need X [0] = X ∗[0]. Clearly X [0] is not real, so
this first condition cannot be met.

I x [n] is symmetric, then X [k] is symmetric, so

X [1] = X [9−1] = 4− j ,X [4] = 3− j ,X [6] = 2− j ,X [7] = 1− j

I x [n] is conjugate symmetric, then X [k] is real, so it’s not
possible
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Question 3

Let x [n] be some length-N sequence. Let X [k] = DFT{x [n]}
I Express x2[n] = DFT{X [k]} in terms of x[n]

I Hint: Try to match DFT{X [k]} with the equation

x [n] =
1

N

N−1∑
k=0

X [k]W−kn
N
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Solution 3

x2[n] = DFT{X [k]}

x2[n] =
N−1∑
k=0

X [k]W kn
N

x2[n] =
N−1∑
k=0

(X [−k])NW
−kn
N

x2[n] = 8IDFT{(X [−k])N}
x2[n] = 8(x [−n])N
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Question 4

Let x [n] be some length-N sequence. Let X [k] = DFT{x [n]}
I Express x3[k] = DFT{DFT{X [k]}} in terms of X[k]

I Express x4[n] = DFT{DFT{DFT{X [k]}}} in terms of x[n]
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Solution 4

I Using the DFT properties:

x2[n] = 8(x [−n])N

x3[k] = DFT{x2[n]} = 8(X [−k])N

x4[n] = DFT{x3[n]} = 64x [n]
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Solution 4 continued

I Ignoring the scaling factors:

x0[n] = DFT 0{x [n]} = x [n]

x1[k] = DFT 1{x [n]} = X [k]

x2[n] = DFT 2{x [n]} = (x [−n])N

x3[k] = DFT 3{x [n]} = (X [−k])N

x4[n] = DFT 4{x [n]} = x [n]

I The usual DFT operator is four-periodic. The nth power of
the Fourier transform can be generalized as the fractional
Fourier transform, which is used in optics.
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Question 5: DCT

I The Discrete Cosine Transform (DCT) is a DFT-related
transform that decomposes a finite signal in terms of a sum of
cosine functions

I The DCT is often used in compression schemes, such as MP3,
JPEG and MPEG.

I One of the reasons is its energy compactness
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Question 5: DCT

I Demo
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Question 5: DCT

Wanting to know more why DCT performs much better than
DFT, you decide to look closer at the definition of DCT

Given that the definition of the DCT (Type 2) is

Xc [k] = 2
N−1∑
n=0

x [n] cos(
πk(2n + 1)

2N
)

Express Xc [k] in terms of X [k], the 2N-point DFT of x [n]
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Solution 5: DCT

Xc [k] = 2
N−1∑
n=0

x [n] cos(
πk(2n + 1)

2N
)

Xc [k] =
N−1∑
n=0

x [n](e−j πk(2n+1)
2N + e j

πk(2n+1)
2N )

Xc [k] =
N−1∑
n=0

x [n]e−j 2πkn
2N e−j πk

2N +
N−1∑
n=0

x [n]e j
2πkn
2N e j

πk
2N

Xc [k] = X [k]e−j πk
2N + X [−k]e j

πk
2N

Xc [k] = X [k]e−j πk
2N + X ∗[k]e j

πk
2N

Xc [k] = 2Real(X [k]e−j πk
2N )
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Solution 5: DCT

Key point is:

Xc [k] = X [k]e−j πk
2N + X [−k]e j

πk
2N

Xc [k] = e−j πk
2N (X [k] + X [−k]e j

2πk
2N )

xc [n] = Shift 1
2
{x [((n))2N ] + x [((−n − 1))2N ]}
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Solution 5: DCT

N

Periodicity assumed by DFT

N

Periodicity assumed by DCT

DCT symmetric extension is better because sharp transitions
require many coefficients to represent
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