EE123 Spring 2015 Discussion Section 6

Frank Ong

Outline

- Lab 2 short overview
- Wavelet transform short overview
- Wavelet problems

Lab 2

Two parts:

1. Install rtl-sdr

- 2. Compute power spectrum for NOAA weather station
- 3. Preamble detection for ADS-B

Part I: How to get spectrum in practice?

- 1. First need to crop signal
 - Gibbs ringing
 - Spectral broadening
- 2. Window chunk

3. FFT

Part I: How to get spectrum in practice?

- 1. First need to crop signal
 - Gibbs ringing
 - Spectral broadening
- 2. Window chunk

Part II: ADS-B

By 2020, all aircraft operating in the US airspaces (A, B, C) will be required to carry equipment that produces an ADS-B Out broadcast.

Part II: ADS-B Detection

- Use preamble for detection
 - Data does not contain pattern like preamble

ADS-B mode S Packet

Part II: ADS-B Detection

- 1. Matched filtering
- 2. Logic

rtl-sdr measured ADS-B mode S packet

Real-Time ADS-B

Found 1 plane

Found 2 planes

Found 3 planes

Found 5 planes

Motivation for wavelet transform

Fourier Transform

does not show temporal information

Short Time Fourier Transform

 Same tradeoff between temporal and spectral resolution across all frequency (Same Heisenberg boxes)

Wavelet Transform

- high temporal resolution for high frequency
- high spectral resolution for low frequency

Which frequency tiling is which?

Which frequency tiling is which?

Use filters!

Multiscale Representation

Difference

• Iterate on the average subband

Haar decomposition example (ignoring scaling)

- x[n] = [5, 5, 5, 5, 6, 6, 7, 7]
 - xd1 = [0, 0, 0, 0]
 - xa1 = [10, 10, 12, 14]
 - xd2 = [0, 2]
 - xa2 = [20, 26]
 - xd3 = [-6]
 - xa3 = [46]

Haar decomposition example (ignoring scaling)

•
$$x[n] = [5, 5, 5, 5, 6, 6, 7, 7]$$

•
$$xa2 = [20, 26]$$

$$\cdot xd3 = [6]$$

•
$$xa3 = [46]$$

Haar Wavelet Basis Functions

Haar for n=8

scaling Φ_{20}

2D Wavelet Transform

Wavelet application: Fingerprint compression

The FBI needs to digitize its ~200 million fingerprint records => need compression

Wavelet

JPEG

Wavelet

Going beyond wavelet: Curvelet

[Activelet] [Amlet] [Anset*] [Armlet] [Bandlet] [Barlet] [Barnlet] [Binlet] [Bumplet*] [Brushlet] [Camplet] [Caplet] [Chirplet] [*Chordlet] [Circlet] [Coiflet] [Contourlet] [Cooklet] [Coslet*] [Caplet] [Cubelet*] [Curclet] [Curclet] [Drectionlet] [Dreamlet*] [Edgelet] [ERBlet] [FAMlet*] [FLaglet*] [Flatlet] [Formlet] [Formlet] [Formlet] [Framelet] [Framelet] [Gaborlet] [Gabor shearlet*] [GAMlet] [Gausslet] [Graphlet] [Graphlet] [Haarlet] [Haarlet] [Hutlet] [Hyperbolet] [Loalet (Icalette)] [Interpolet] [Lesslet (cf. Morelet)] [Loglet] [Marrlet*] [MIMOlet] [Monowavelet*] [Morelet] [Morphlet] [Multiselectivelet] [Multiwavelet] [Noiselet] [Ondelette/wavelet] [Ondulette] [Prewavelet*] [Plaselet] [Planelet] [Platelet] [Purelet] [Quadlet/q-Quadlet*] [QVlet] [Radonlet] [Ramllet] [Ranklet] [Ridgelet] [Riezlet*] [Ripplet (original, type-I and II)] [Scalet] [Seamlet] [Seislet] [Shadelet*] [Shapelet] [Shapelet] [Sinclet] [Sinclet] [Sinclet] [Sinclet] [Superwavelet] [Superwavelet] [Superwavelet] [Surfacelet] [Surfacelet] [Symlet/Symmlet] [Sulet*] [Tetrolet] [Treelet] [Vaguelette] [Wavelet-Vaguelette] [Wavelet] [Warplet] [Warplet] [Warplet] [Xlet/X-let]

Problem 1

- Compute the Haar wavelet transform of the following signal (ignore scaling):
 - x[n] = [1, 1, 2, 10, 4, 4, 1, 1]

Solution 1

- x[n] = [1, 1, 2, 10, 4, 4, 1, 1]
- \cdot xd1 = [0, 8, 0, 0]
- xa1 = [2, 12, 8, 2]
 - \cdot xd2 =[10, -6]
 - xa2 = [14, 10]
 - $\cdot xd1 = [-4]$
 - xa1 = [24]

Problem 2

- x[n] = ???
- \cdot xd1 = [0, 0, 0, 0]
- xa1 = ???
 - \cdot xd2 =[10, -5]
 - xa2 = ???
 - \cdot xd1 = [-4]
 - \cdot xa1 = [24]

Reconstruct x[n] from its Haar wavelet coefficients

Solution 2

- x[n] = [1, 1, 6, 6, 3.75, 3.75, 1.25, 1.25]
- \cdot xd1 = [0, 0, 0, 0]
- xa1 = [2, 12, 7.5, 2.5]
 - \cdot xd2 =[10, -5]
 - xa2 = [14, 10]
 - $\cdot xd1 = [-4]$
 - \cdot xa1 = [24]

Problem 3

Problem 2. Consider the uncertainty relation $\Delta_w^2 \cdot \Delta_t^2 \geq \pi/2$, where $\Delta_t^2 = \int_{-\infty}^{+\infty} t^2 |f(t)|^2 dt$ and $\Delta_\omega^2 = \int_{-\infty}^{+\infty} \omega^2 |F(\omega)|^2 d\omega$

Can you give the time-bandwidth product of a rectangular pulse, $p(t) = 1, -1/2 \le t \le 1/2, 0$ else?

Hint: Approximate the sinc(x) function with 1/x

Solution 3

 The frequency deviation for a rect function blows up to infinity, so the time-frequency product is infinity

 Interestingly, the time-frequency product for a triangular pulse is finite because we have a sinc² instead. The product has the value:

$$\Delta_t^2 \Delta_\omega^2 = \left(\frac{1}{10}\right) (6\pi) = 0.6\pi \ge \frac{\pi}{2}$$