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[lecture NOTES]

R
ecently, while reading a paper 
on heart rate monitoring 
using an accelerometer [1], I 
found myself asking the 
question posed by the above 

title. While searching for the answer, I 
discovered many things that seemed to 
be well known to others outside the field 
of digital signal processing (DSP) but not 
to me. After adding some results of my 
own, I presented what I had learned at a 
poster session at the 2011 DSP/SPE 
Workshop [2]. As I interacted with peo-
ple at the poster session, I asked if they 
had ever heard of Savitzky-Golay (S-G) 
filters. Given my own ignorance, it was 
comforting that only one out of about 20 
had heard of them. What is remarkable 
about this is that Savitzky and Golay’s 
paper [3], published in 1964, was 
described in 2000 by editors of the jour-
nal Analytical Chemistry as number five 
among the top ten papers ever published 
in that journal [4]. They stated, “It can 
be argued that the dawn of computer-
controlled analytical chemistry can be 
traced to this article.” For this reason, I 
feel that it could be useful to use the 
"Lecture Notes" forum to introduce (or 
reintroduce) my colleagues in signal 
processing to the S-G filters. 

RELEVANCE
In their “seminal” [4] paper [3], Savitzky 
and Golay proposed a method of data 
smoothing based on local least-squares 
polynomial approximation. They showed 
that fitting a polynomial to a set of input 
samples and then evaluating the result-
ing polynomial at a single point within 
the approximation interval is equivalent 
to discrete convolution with a fixed 

impulse response. The lowpass filters 
obtained by this method are widely 
known (in some sectors) as Savitzky-
Golay filters. Savitzky and Golay were 
interested in smoothing noisy data 
obtained from chemical spectrum ana-
lyzers, and they demonstrated that least-
squares smoothing reduces noise while 
maintaining the shape and height of 
waveform peaks (in their case, Gaussian-
shaped spectral peaks). In researching 
this topic, I did find some awareness of 
S-G filters in the signal processing com-
munity. Hamming’s book [7] has a dis-
cussion of the use of least-squares in 
data smoothing, and Orfanidis has a 
detailed discussion of S-G filters in his 
book, which is now out of print but 
available for free download [8]. Some 
researchers have found the peak shape 
preservation property of the S-G filters 
to be attractive in applications such as 
electrocardiogram processing [1] and the 
basic concept of least-squares polynomi-
al smoothing has been generalized to 
two dimensions [5] and applied in pro-
cessing images such as ultrasound and 
synthetic aperture radar. 

While frequency-domain representa-
tions of S-G filters have been discussed 
[6], [7], most presentations on S-G filters 
(e.g., [9], [10]) have emphasized time-
domain properties (such as complicated 
closed-form expressions for the impulse 
responses) without reference to such 
frequency-domain features as passband 
width or stopband attenuation. Therefore, 
the purpose of this article is to examine 
S-G filters from the frequency-domain 
viewpoint and to quantify some of their 
frequency-domain properties. 

PREREQUISITES
This article assumes only a familiarity 
with finite-impulse response (FIR) 

digital filters and a basic knowledge of 
matrices. 

LEAST-SQUARES 
SMOOTHING OF SIGNALS
The basic idea behind least-squares poly-
nomial smoothing is depicted in 
Figure 1, which shows a sequence of 
samples x 3n 4 of a signal as solid dots. 
Considering for the moment the group 
of 2M1 1 samples centered at n5 0, we 
obtain (by a process to be described) the 
coefficients of a polynomial 

   p 1n 2 5 aN
k50

ak nk (1)

that minimize the mean-squared approx-
imation error for the group of input 
samples centered on n5 0,  

 EN5 aM
n52M

1
 
p 1n 2 2 x 3n 4 2 2

 5 aM
n52M

aaN
k50

ak nk2 x 3n 4b2

. (2)

The analysis is the same for any other 
group of 2M1 1 input samples. We shall 
refer to M  as the “half width” of the 
approximation interval. In Figure 1, 
where N5 2 and M5 2, the solid curve 
on the left in Figure 1 is the polynomial 
p 1n 2  evaluated on a fine grid between 
22 and 12, and the smoothed output 
value is obtained by evaluating p 1n 2  at 
the central point n5 0. That is, y 30 4, the 
output at n5 0, is 

 y 30 45 p 10 2 5 a0,  (3)

i.e., the output value is just equal to the 
0th polynomial coefficient. In general, 
the approximation interval need not be 
symmetric about the evaluation point. 
This leads to nonlinear phase filters, 
which can be useful for smoothing at 
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the ends of finite-length input sequenc-
es. The output at the next sample is ob-
tained by shifting the analysis interval 
to the right by one sample, redefining 
the origin to be the position of the mid-
dle sample of the new block of 2M1 1 
samples, and repeating the polynomial 
fitting and evaluation at the central lo-
cation. This can be repeated at each 
sample of the input,  each time 
 producing a new polynomial and a new 
value of the output sequence y 3n 4. 
Another example is shown on the right 
in Figure 1 where the center of the in-
terval is shifted to sample n5 10 and 
the new polynomial fit to the samples 
8 # n # 12 is shown again by the solid 
curve and the output at n5 10 is the 
value of the new polynomial evaluated 
at the center location. 

The original paper by Savitzky and 
Golay [3] showed that at each position, 
the smoothed output value obtained by 
sampling the fitted polynomial is identi-
cal to a fixed linear combination of the 
local set of input samples; i.e., the set of 
2M1 1 input samples within the 
approximation interval are effectively 
combined by a fixed set of weighting 
coefficients that can be computed once 
for a given polynomial order N  and 
approximation interval of length 
2M1 1. That is, the output samples can 
be computed by a discrete convolution 
of the form 

 y 3n 45 aM
m52M

h 3m 4x 3n2m 4
 5 an1M

m5n2M
h 3n2m 4x 3m 4. (4)

The values marked with 3  in Figure 1 
are the shifted impulse responses 
h 302m 4 and h 3102m 4 that could be 
used to compute the output samples 
labeled with ~, thus replacing the poly-
nomial fitting process at each sample 
with a single evaluation of (4). 

To show that we can find a single finite-
duration impulse response that is equiva-
lent to least-squares polynomial smoothing 
for all shifts of the 2M1 1-sample interval, 
we must first determine the optimal coeffi-
cients of the polynomial in (1) by differenti-
ating EN in (2) with respect to each of the 
N1 1 unknown coefficients and setting 
the corresponding derivative equal to zero. 
This yields, for i5 0, 1, c, N, 

 
' EN

' ai
5 aM

n52M
2ni aaN

k50
ak nk2 x 3n4 b 5 0, 

 (5)

which, by interchanging the order of the 
summations, becomes the set of N1 1 
equations in N1 1 unknowns 

aN
k50
a aM

n52M
ni1kbak

 5 aM
n52M

nix 3n4    i5 0, 1, c, N. (6)

The equations in (6) are known as the 
normal equations for the least-squares 
approximation problem. It is impor-
tant to note before proceeding that a 
unique solution requires that we have 
at least as many data samples as we 
have coefficients in the polynomial 
approximation. That is, we require 
N # 2M. In fact, the equations in (6) 
become ill-conditioned if M and N  are 
large and N  is close to 2M. Further -
more, if N5 2M  the polynomial fits 
the 2M1 1 data samples exactly and 
no smoothing results. 

Additional insight can be obtained by 
expressing the equations in (6) in matrix 
form. To do this, it is helpful to define a 12M1 1 2  by 1N1 1 2  matrix A5 5an,i6 
as the matrix with elements 

 an, i5 ni,  2M # n # M,  
  i5 0, 1, c, N.

This matrix is called the design matrix 
for the polynomial approximation prob-
lem [10]. The transpose of A  is 
AT5 5ai,n6  and the product matrix 
B5 ATA is an 1N1 1 2 3 1N1 1 2  sym-
metric matrix with elements 

 bi, k 5 aM
n52 M

ai, nan, k 5 aM
n52 M

ni1 k5bk, i,  

for i5 0, 1, c, N and k5 0, 1, c, N, 
which we see are the coefficients for the 
set of equations in (6). Furthermore, if 
we define the vector of input samples as 

 x5 3  x 3 2M 4, c, x 3 2 1 4,  
 x 30 4, x 31 4, c, x 3M 4  4T
and define a5 3a0, a1, c, aN 4T as the 
vector of polynomial coefficients, then it 
follows that the equations in (6) can be 
represented in matrix form as 

 Ba5 ATAa5 ATx.

Therefore, the solution for the polynomi-
al coefficients can be written as 

 a5 1ATA 221ATx5Hx.

Now recall that the output for the 
group of samples centered on n5 0 is 
y 30 45 a0; i.e., we only need to obtain 
the coefficient a0. Furthermore, we see 

100 m or n

x (m ) or x (n )

[FIG1] Illustration of least-squares smoothing by locally fitting a second-degree 
polynomial (solid line) to five input samples: d denotes the input samples, ~ 
denotes the least-squares output sample, and 3  denotes the effective impulse 
response samples (weighting constants). (The dotted line denotes the polynomial 
approximation to centered unit impulse.) 
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that we only need the 0th row of the 1N1 1 2 3 12M1 1 2  m a t r i x  H51ATA 221AT, which by the definition of 
matrix multiplication gives a0 as a linear 
combination of the 12M1 1 2  elements 
of the 12M1 1 2 3 1 column vector x. 
The important observation is that the 
matrix H depends only on N and M and 
is independent of the input samples. 
Thus, the same weighting coefficients 
will be obtained at each group of 2M1 1 
input samples, and so we can think of 
least-squares smoothing as a shift-invari-
ant discrete convolution process. 

One approach to finding the impulse 
response of the equivalent linear time-
invariant (LTI) system is to compute the 
matrix H. Then, by the definition of 
matrix multiplication, the output will be 

 y 30 45 a05 aM
m52M

h0, m x 3m 4,
where hi, n denotes the elements of the 1N1 1 2 3 12M1 1 2  matrix H and h0, m  
is an element of the 0th row. Therefore, 
comparing this equation to the second 
term of (4) with n5 0, we observe that 

 h 3 2 m 4 5h0, m 2M #m #M.

Note that this equation gives h 32m 4 
since, as shown in (4), the impulse 
response is flipped with respect to the 
input in evaluating discrete convolu-
tion. Efficient matrix inversion tech-
niques can be employed to compute 
only this first row rather than the entire 
matrix H [10]. 

Another approach is to note that since 
the same weighting coefficients are 
obtained irrespective of the signal vector, 
we can set x equal to a unit impulse cen-
tered in the interval 2M # n # M, and 
solve for all the coefficients of the corre-
sponding polynomial approximation. Note 
that these polynomial coefficients, 
denoted as a|, will generally not be equal 
to those of any of the local approxima-
tions that are implicitly generated for 
each group of 2M1 1 input samples. 
Then, the impulse response can be 
obtained by evaluating the corresponding 
polynomial at locations 2M # n # M. 

To show that this statement is true, 
we denote the coefficient vector for 

approximation of the impulse input as a|, 
which is given by 

 a|5 1ATA 221ATd,

where d5 30, 0, c, 0, 1, 0, c, 0, 0 4T 
is a 12M1 1 2 3 1 column vector 
impulse and AT  is the 1N1 1 2 3  12M1 1 2  matrix 

AT5E 12M 2 0 c 121 2 0 1 10 cM012M 2 1 c 121 2 1 0 11 cM112M 2 2 c 121 2 2 0 12 cM2

( ( ( ( ( ( (12M 2N c 121 2N 0 1N cMN

U. (7)

Then for the impulse input d, it follows that 
ATd is the 1N1 1 2 3 1 column vector 

 ATd5 31, 0, c, 0 4T.

This means that the symmetric matrix 1ATA 221 must have the form 

 1ATA 2215 ≥ a|0 a|1
c a|N

a|1 . c .
( ( ( (

a|N . c .

¥ , 

where the matrix entries denoted • do 
not enter into the computation of a|. 
Now, since AT is as given in (7), it fol-
lows from the definition of matrix mul-
tiplication that the 0th row of the 
matrix H5 1ATA 221AT is 

 3h0, 2 M,  h0, 2 M11, c, h0, 0,c, h0, M 4
5 3p| 12M 2 , p| 12M112, 

c
 , p| 102, 

c
 , p|1M 24,

where p| 1n 2  is the polynomial fit to the 
unit impulse evaluated at the integers 
2M # n # M, 

 p| 1n 2 5 aN
k50

a|k nk 2M # n # M. (8)

Therefore, the impulse response of the 
S-G filter is 

 h 32n 45 h0, n5 p| 1n 2 .
As before, this equation gives h 3 2 n 4 
since the impulse response is flipped 
around n5 0 in evaluating discrete 
convolution. Henceforth, we shall refer 
to p| 1n 2  as the impulse response design 
polynomial. As we will discuss in a 
later section, (8) is the basis for a sim-
ple method for the design of S-G filters 
using the polynomial fitting functions 
in MATLAB. 

PROPERTIES OF S-G FILTERS
Figure 2 shows the impulse response of 
an S-G filter with N5 6 and M5 16. 
Although this is a specific example, its 
time-domain properties are representa-
tive of the entire class of symmetric S-G 
filters. 

Figure 3 shows the frequency re -
sponse of several S-G filters designed by 
MATLAB statements given in the section 
“Design of S-G Filters.” The impulse 
response lengths are all 12M1 1 2 5
2 # 161 15 33 with implicit polynomial 
orders of N5 0, 2, 4, 6, 12. Figures 2 and 
3 illustrate properties shared by all S-G 
filters. These properties, which result 
from the structures of the matrices B and 
H, are summarized below: 

 ! P1 The odd-indexed coefficients 
of the impulse response design poly-
nomial are all zero so that we can 
express p| 1n 2  as 

 p| 1n 2 5 a:N/2;
k50

a|2k n2k, (9)
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S-G Impulse Response: N = 6, M = 16

[FIG2] Impulse response of an S-G filter with M5 16 and N5 6. The dashed curve is 
the polynomial p| 1n 2  evaluated on a dense grid. 
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where : ;  means rounding down. 
Among other things, this means that 
the S-G filters for N  and N1 1 are 
identical for N an even integer. 

 ! P2 Moving average (MA) filter-
ing defined as 

 y 3n 45 1
2M1 1

  an1M

m5n2M
x 3m 4

is identical to S-G smoothing with 
polynomials of order N5 0 (con-
stant) and M5 1 (straight line). 

 ! P3 The impulse response is 
symmetric since h 32n 45 p| 1n 2 5
p| 12n 2 5 h 3n 4. Therefore, the fre-
quency response is purely real. 
(The shifted impulse response 
h 3n2M 4  is causal and the corre-
sponding frequency response has 
linear phase corresponding to the 
time delay of M  samples.) S-G fil-
ters are type I FIR lowpass filters 
[11] with nominal passband gain of 
unity. 

 ! P4 The zeros of the system func-
tion H 1z 2  of an S-G filter are either 
on the unit circle of the z-plane or 
they occur in complex conjugate 
reciprocal groups [11]. The unit circle 
zeros are, of course, responsible for 
the sharp dips (high attenuation) in 
the stopband of the frequency 
responses in Figure 3. 

 ! P5 S-G filters have very flat fre-
quency response in their passbands 
since it can be shown using (8) and 

(9) and the normal equations (6) that 
H 1ejv 2 |v505 1 and 

 
drH 1ejv 2

dvr `
v50

5 12j 2 r aM
n52M

nrh 3n 45 0, 

 (10) 

for r5 1, 2, c, N. Furthermore, it 
can be shown using the product rule 
from differential calculus and 
Parseval’s theorem that (10) guaran-
tees that the first N moments of the 
input signal x 3n 4 are preserved in the 
output y 3n 4; i.e., 

 a`
n52`

nry 3n 45 a`
n52`

nrx 3n 4 
 r5 1, 2, c, N. (11)

 ! P6 The nominal normalized 
cutoff (3 dB down) frequency, 
fc5vc/p,  depends on both the 
implicit polynomial order N  and 
the length of the impulse response, 
(2M1 1 2 . If M is fixed as in Figure 
3, the passband of the filter gets 
wider approximately in proportion 
to N. Although not illustrated in 
Figure 3, the cutoff frequency also 
depends inversely on M. S-G filters 
are often compared against a MA fil-
ter with the same impulse response 
length [10]. Figure 3 shows that 
this is somewhat unfair since a 
shorter MA filter could have rough-
ly the same cutoff frequency as a 
longer S-G filter with higher value 
of N. To clarify this interaction of N  

and M, the next section gives an 
approximate empirical relation for 
fc as a function of both N  and M. 

 ! P7 The S-G filters have mediocre 
attenuation characteristics in their 
stopband regions (except at the fre-
quencies corresponding to zeros on the 
unit circle). Defining the stopband as 
the frequency range from the first zero 
up to p radians, we see from Figure 3 
that for the MA filter 1N5 0 or 1 2 , the 
minimum attenuation in the stopband 
(amplitude of first peak after the first 
zero) is approximately 13 dB. For 
N $ 2, the minimum attenuation in 
the stopband is approximately 11 dB. 
Figure 3 also shows that the peak stop-
band gain tends to increase with 
increasing N for fixed M and that the 
frequency response decreases slightly 
in gain as frequency increases above 
the nominal cutoff frequency.

DESIGN OF S-G FILTERS
Recall from (8) that the impulse 
response of an S-G filter can be comput-
ed as samples of the Nth degree polyno-
mial fit to the unit impulse sequence. 
This method of computing the S-G 
  filters is easily implemented using 
MATLAB’s polynomial functions as in the 
following MATLAB statements: 

a=polyfit(-ML:MR,... 

   [zeros(1,ML),1,zeros

(1,MR)],N); 

h=fliplr( polyval(a,-ML:MR)) 

The MATLAB function polyfit() 
computes the coefficients of the impulse 
response design polynomial and poly-
val() evaluates the polynomial at a 
discrete set of points. Note that these 
statements can be used to compute non-
symmetric S-G filters by setting ML?MR. 
The MATLAB Signal Processing Toolbox 
has a function sgolayfilt()  for 
designing and implementing both sym-
metric and nonsymmetric S-G filters.  

There are some important constraints 
in the use of polynomial fitting in general. 
Specifically, the number of data points (in 
this case 2M1 1) must be strictly greater 
than the number of undetermined 
 coefficients N1 1 to achieve smoothing 
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[FIG3] Frequency response of S-G filters for M5 16 and various polynomial orders. 
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by the S-G process. Furthermore, if the 
order of the polynomial, N, is too large, 
the approximation problem is badly con-
ditioned and the solution will be of no 
value. (The function polyfit() issues 
an alert when the approximation problem 
is ill conditioned.) Although these factors 
are significant limitations, a wide range of 
frequency-domain characteristics can be 
achieved nevertheless by choosing M and 
N appropriately. 

To quantify the frequency-domain 
behavior of S-G filters, impulse responses 
were computed for various values of M 
and N within the constraints mentioned 
above, and the corresponding fre-
quency responses were computed for 
0 # v # p. The passband of the filter 
was defined by the frequency where 
20 log10|H 1e jv 2 | is “3 dB down” from the 
value of 0 dB, the gain of the filter at 
v 5 0. The results for measurements on 
f i l ters  with M5 2, 3, c, 20  and 
M5 25, 50, 100, 200 for even polyno-
mial orders N are displayed in Figure 4. 
The points marked with * and connected 
by a blue line are the measured cutoff fre-
quencies for a fixed value of M. The values 
for commonly used short filters 12 # M # 6 and N , 2M) are given 
more precisely in Table 1. These are the 
cutoff frequencies for all possible sym-
metric S-G filters for impulse response 
lengths 5 # 12M1 1 2 # 13. Observe 
that the cutoff frequencies that are 
achievable range from 0.165 to 0.681, but 
only a discrete set of values is possible. 

In all cases in Figure 4, fc varies 
almost linearly with N  when N V 2M 
with the slope being dependent 
inversely on M, but the curves for 
M , 25 tend to deviate from a straight 
l ine as N  increases toward 2M. 
However, when M is large, as in the four 
cases M5 25, 50, 100, 200, the  linear 
region of the curve coincides with the 
range of usable values of N, so a nearly 
linear relation holds over a wide range 
of N. A reasonably accurate approxima-
tion to this behavior for the indicated 
range of parameters is the equation 

 fc5
N1 1

3.2M2 4.6
  M $ 25 and N , M.

 (12)

The values of fc5vc/p predicted by 
this equation are marked with a red + 
and connected by a red line. Figure 4 
shows that this simple formula fits the 
measurements quite well even for the 
case M5 25 where the measurements 
deviate only slightly from the straight 
line over the entire range of N. The 
relative error in predicting the mea-
sured cutoff frequency is less than 4% 
over the range M5 25, 50, 100, 200 
and N5 4, c, 32, and the relative 
error is within 8% for  the cases 
M5 25,50, 100, 200 and N5 2. As can 
be seen, large values of M and small N  
lead to extremely narrow passbands, 
which would be of limited usefulness 
except when the signal components 
are greatly oversampled. Even though 
the function polyfit() gave an ill-
conditioned warning for the larger val-
ues of N, the resulting filters remained 
acceptable for values of N  up to about 
40. The formula in (12) becomes 
increasingly accurate for larger values 

of M and N. The formula does not fit 
as well for values of M  less than 25. 
However, the dependence of fc on N  is 
still linear except for small M. For 
10 # M , 25 and N  suitably restrict-
ed, a formula similar to (12) with 4.6 
replaced by 2 gives more accurate pre-
dictions. While a more complicated 
functional form based on more mea-
surements could provide more accu-
rate predictions over a wider range of 
M and N, (12) should be adequate for 
most applications of S-G filters where 
precise specification of the cutoff fre-
quency is not required. 

Figure 4 points out another feature 
of S-G filters that is often overlooked. A 
given desired cutoff frequency fc can be 
realized by different combinations of N  
and M. For example, we can achieve a 
cutoff frequency fc5vc/p < 0.4 using 
the (N, M) pairs (4,4), (9,10), (14,16), 
and (22,19). These filters differ in the 
sharpness of their transition from flat 
passband to stopband, which just 
reflects a familiar property of FIR dis-
crete-time lowpass filters that the 
widths of transition regions are typi-
cally inversely proportional to the 
length of the impulse response. 

DISCUSSION
While there is value in knowing that a 
single S-G impulse response implicitly 
achieves local polynomial fitting for 
every  output  sample ,  in  many 
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[FIG4] Relationship between 3 dB cutoff frequency fc5vc /p, polynomial length N, 
and impulse response half-length M. 

[TABLE 1] NORMALIZED 3 dB 
CUTOFF FREQUENCIES fc 5 vc /p 
AS A  FUNCTION OF M AND N.

POLYNOMIAL ORDER, N 

M 2 4 6 8 10 
2  0.475 – – – – 
3 0.319 0.561 – – – 
4 0.243 0.406 0.615 – – 
5 0.197 0.323 0.467 0. 653 – 
6 0.165 0.269 0.382 0.512 0.681 
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 applications, signals are not character-
ized in terms of their ability to be mod-
eled by polynomials but rather in terms 
of their frequency spectra. Thus, we have 
focused in this article on the frequency-
domain properties of the S-G filters. 

S-G filters are often preferred (even 
revered in some circles) because, when 
they are appropriately designed to match 
the waveform of an oversampled signal 
corrupted by noise, they tend to preserve 
the width and height of peaks in the sig-
nal waveform. While such performance 
features are often explained in terms 
of matching fitted polynomial slopes 
to signal slopes or to the preservation 
of signal moments, the reason for this 
behavior is more  obvious from the fre-
quency-domain properties of the filters. 
Specifically, S-G filters have extremely 
flat passbands with modest attenuation 
in their stopbands. Furthermore, the 
symmetric S-G filters have zero phase 
so that features of the signal are not 
shifted. Thus, if the signal has most of its 
energy in the filter passband (implying 
significant over-sampling), the signal 
components are undistorted while some 
high-frequency noise is reduced but not 
completely eliminated. Of course, as-
suming that the signal is lowpass and 
oversampled is equivalent to assuming 

that the signal is “smooth enough” to 
be represented by a polynomial of “high 
enough” degree. However, S-G filters are 
often used in applications where a direct 
frequency-domain specification is more 
precise or more easily related to models 
for signal production. In s uch cases, the 
empirical relationship in (12) or the plot 
of Figure 4 may be useful. Even in the 
case of the sampled Gaussian wavelets 
that model chemical s pectrum lines, the 
corresponding Fourier transform also 
has Gaussian shape, and it is straight-
forward to determine the frequency-do-
main width as a function of the width of 
the Gaussian wavelet. 

From the frequency-domain point of 
view, the question naturally arises as to 
whether the main desirable property of 
the S-G filters (very flat passband) could 
be achieved with another design 
method, and perhaps with greater atten-
uation in the stopband region. Figure 5 
shows the frequency response of an S-G 
filter with M5 16 (impulse response 
length L5 2M1 15 33) and N5 6. 
Also shown is the frequency response of 
a length L5 33 filter designed by the 
Parks-McClellan (P-M) algorithm. In 
this example, the passband and stop-
band cutoff frequencies of the P-M filter 
were adjusted by trial and error so that 

the transition region and the location of 
the first zero of the frequency response 
were approximately in the same loca-
tion as those of the corresponding S-G 
filter. The measured 3 dB cutoff fre-
quency of the S-G filter was fc5 0.143 
(the formula of (12) predicts fc5 0.15). 
A very flat passband is achieved with the 
P-M design algorithm by imposing a 
10:1 weighting ratio between the pass-
band equiripple approximation error 
and the stopband approximation error. 

Larger ratios will make the passband 
even flatter. In the case of the S-G filter, 
the gain at the first local maximum 
beyond the first zero of the frequency 
response is 211.73 dB, while the equi-
ripple maxima of the P-M filter have 
gains of 219.9 dB. The lower part of the 
plot shows that the passband gain of the 
P-M filter has small ripple about 0 dB, 
and the flat region is in fact wider than 
that of the S-G filter. However, due to 
the tendency of  S-G frequency 
responses to fall off at high frequencies, 
the S-G filter has slightly lower peak 
stopband gain than the P-M filter after 
about v /p5 0.5. 

Given the close similarity of the two 
frequency responses in Figure 5, it is clear 
that for the case of a signal confined to the 
band |v| , 0.143p with additive white 
noise, the performance of the two systems 
will be nearly identical. Experiments with 
longer impulse responses show that P-M 
filters can achieve very flat passbands and 
greater stopband attenuation than an 
equivalent S-G filter. Also, recall that the 
cutoff frequencies of the S-G filters are 
restricted to a finite set while those of the 
P-M filter are not.

WHAT WE HAVE LEARNED
This article has attempted to answer the 
question “What is a Savitky-Golay fil-
ter?” in terms that will be familiar to 
the DSP community and readers of 
IEEE Signal Processing Magazine. We 
reviewed the definition and properties 
of S-G filters and showed how they can 
be designed easily using polynomial 
approximation of an impulse sequence. 
In contrast to most discussions of S-G 
filters, we focused on the frequency-
domain properties, and offered an 
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[FIG5] Comparison of an S-G filter (N5 6 and M5 16) with an equal-length 
equiripple filter designed with the PM algorithm. (a) Entire frequency response and 
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approximate formula for the 3-dB  cutoff 
frequency as a function of polynomial 
order N  and impulse response half-
length M. Engineers with a frequency-
domain mindset (like the author) may 
find this useful if they choose to use 
S-G filters in their application. 
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I
n this article, the goal is to show 
that it is possible to filter non-
u n i f o r m l y  s a m p l e d  s i g n a l s 
according to specs defined in the 
Fourier domain. In many practi-

cal applications, it is necessary to fil-
ter irregularly sampled data including 
seismic signal processing, synthetic 
aperture radar (SAR) imaging sys-
tems, three-dimensional (3-D) mesh-
es, and digital terrain models [1], [2]. 
In almost all of these practical prob-
lems, it is possible to define the 
desired filtering solution in a set the-
oretic framework. This lecture note 
presents a new method for filtering 
irregularly sampled data by defining 
stopband tolerance regions in the 
Fourier domain and time-domain 
upper and lower bounds on the signal 

samples as a part of the filtering pro-
cess. Since there are specifications in 
both time and frequency domains, it 
is possible to iterate between time and 
frequency domains using the fast 
Fourier transform (FFT) while impos-
ing the constraints in each domain. 

RELEVANCE
The ideas presented here can be used to 
develop filtering algorithms for irregu-
larly sampled one or higher dimension-
al data. It can be used as a teaching 
material in advanced undergraduate 
and graduate discrete-time signal pro-
cessing, optimization as well as applied 
mathematics courses. 

PREREQUISITES
The prerequisites for understanding this 
article’s material are linear algebra, dis-
crete-time signal processing, and basic 
optimization theory. 

PROBLEM STATEMENT
Let us assume that samples xc 1ti 2 , 
i5 0, 1, 2, c, L2 1,  of a continuous 
time-domain signal xc 1t 2  are available. 
These samples may not be on an uni-
form sampling grid. Let us define 
xd 3n 45 xc 1nTs 2  as the uniformly sam-
pled version of this signal. We assume 
that the sampling period Ts is sufficient-
ly small (below the Nyquist period) for 
the signal xc 1t 2 . In a typical discrete-
time filtering problem, we have xd 3n 4 or 
its noisy version, and we apply a dis-
crete-time low-pass filter to the uni-
formly sampled signal xd 3n 4. However, 
xd 3n 4 is not available in this problem. 
Only nonuniformly sampled data xc 1ti 2 ,  
i50, 1, 2, c    , L21 are available in this 
problem. 

GOAL
Our goal is to low-pass filter the non-
uniformly sampled data xc 1ti 2  according 
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