Time Frequery Wardets

- 2D Time-Frequery Representation $s(t, f)$ of sigmel $x(t)$
\leadsto Spectral Characteritin ave Tive depedent
- Gabor \rightarrow S.T.F.T.

$$
\begin{aligned}
\operatorname{STFT}\{x(t)\} & =\operatorname{STFT}(\tau, f)=-j \operatorname{T1f} t \\
& =\int x(t) g^{-k}(t-\tau) e^{-2} d t
\end{aligned}
$$

- Refine rms "banduridh" of g as:

$$
\begin{aligned}
g(t) & \xrightarrow{2} G(f) \\
\Delta f & =\frac{\int f^{2}|G(f)|^{2} d f}{\int|G(f)|^{2} d f}
\end{aligned}
$$

- Similarly spreadits time Δt
) $\Delta t^{2}=$

$$
\int t^{2}|g(t)|^{2} d t
$$

$$
\int|g(t)|^{2} d t
$$

ot: two pulse in Tine cau be differentiated if mone Than st apart

- Heisbery uncortailly primple:

$$
\text { time-handmith psodact } \approx \Delta t \text { of } \geqslant \frac{1}{4 H}
$$

- Gaussian windows ment the bound unth Equaly.
- Ohservation: Ome $g(t)$ is chosen for S.T.F.T, Time and finequy nosolution giva by Δt, Δf is FNED over The entine T.F. plare.
: Same unindow is used at ALL froqueies
Hisenbery Box for S.TII.T.

Assume g is neal symetric $g(t)=g(-t)$

$$
\|g\|=1
$$

Emergy density br Spectrognan.

Energy aconsiy

$$
P_{s} f(\underline{u}, \xi)=\left|\int_{-\infty}^{+\infty} f(t) g(t-u) e^{-j \xi t} d t\right|^{2}
$$

Neasmes the evoy of functions f in a Time Frey neighhorhod (u, ξ) sperihes by Hisenbey box of $g_{u, \xi}$

Tim spond aroud u is ivdp op u, $\{$

$$
\begin{aligned}
& \text { Tim sprent avend } u \text { is ivdp up } u, \xi \\
& \sigma_{t}^{2}=\int_{-\infty}^{+\infty}(t-u)\left|g_{u, \xi}(t)\right|^{2} d t=\int_{-\infty}^{+\infty} t^{2}|g(t)|^{2} d t \\
& \hat{g}=F, T \text { uf } g \\
& \hat{g}_{u, \xi}(\omega)=\hat{g}(\omega-\xi) e^{-j u(\omega-\varepsilon)}
\end{aligned}
$$

Freq spread and ξ is

$$
\begin{aligned}
& \text { Freq spread and } \xi \text { is } \\
& \begin{aligned}
\sigma_{\omega}^{2} & =\frac{1}{2+1} \int(\omega-\xi)^{2}|\hat{g}(\omega)|^{2} d \omega \\
= & \frac{1}{2+1} \int_{-\infty}^{+\infty} \omega^{2}|\hat{g}(\omega)|^{2} d \omega
\end{aligned}
\end{aligned}
$$

a., correspeal T a Hersbey box

Gu,k corgerpen T_{0} a Hersbey box of aren $\sigma_{t} \times \sigma_{w}$ centend $\operatorname{arrd}(u, \xi)$
w

Contiman Wavalet Trafon

- Charg the size/suppart/length up wido to aualyze signal strveture al difhat size on differet "scole". \longrightarrow Wavelet.
- Wavelet Xforni:. Decoupore sigal o ver dialated and Trunslated waveleth:
Wavelet f_{n} : $\psi \in \mathcal{L}^{2}(k)$
, Continn difhentriels fus

$$
F \cdot t\{\psi\}=\hat{\psi}_{n+\infty}=\text { bandpass } \operatorname{Liter}^{\prime}\|\mathcal{N}\|=1
$$

$$
\int_{-\infty}^{+\infty} \psi(t) d t=0
$$

- Continous wavelet Trafor CWT af $f \in L^{2}(R)$ at Time u, scales

$$
\begin{aligned}
& W f(u, s)=\left\langle f, \psi_{u, s}\right\rangle \\
&=\left\langle f, \frac{1}{\sqrt{s}} \psi\left(\frac{t-u}{s}\right)\right. \\
& u \in R \\
& s \in R^{+} \\
&=\int_{-\infty}^{+\infty} f(t) \psi^{*}\left(\frac{t-u}{s}\right) d t \\
&=f * \tilde{\psi}_{s}(u) \\
& \tilde{U}_{s}(u) \stackrel{D}{\sqrt{s}} \psi^{*}\left(\frac{-t}{s}\right)
\end{aligned}
$$

the Let $\psi \in L^{2}(R)$ be a real f_{n}. st.

$$
c_{\psi} \equiv \int_{0}^{\infty} \frac{|\hat{\psi}(\omega)|}{\omega} d \omega<\infty<
$$

Then any $f \in L^{2}(R)$ satisfies

1 hea ary $+t L$

$$
f(t)=\frac{1}{c_{\psi}} \int_{0}^{\infty} \int_{0}^{\infty} W f(u, s) \frac{1}{\sqrt{s}} \psi\left(\frac{t-u}{s}\right) \frac{1}{s^{2}} d u d s
$$

and $\int_{-\infty}^{+\infty}|f(t)|^{2} d t=\frac{1}{c_{\psi}} \int_{0}^{\infty} \int_{-\infty}^{+\infty}|\omega f(u, s)|_{\frac{1}{s_{2}}}^{2} d(d s$
$C_{\psi}<\infty \quad$ admissibolity condition.
If $\hat{\psi}(0)=0$ is $\hat{\psi}$ is abandpars function \&
$\Psi(\omega)$ is continonly difherentiall then admissibity fu is satisfers

- Can show $\hat{\psi}(w)$ is continonly differentialle if

$$
\int_{-\infty}^{+\infty}(1+|t|) \psi(t) d t<{ }_{n}^{\infty}
$$

Y sothiully tive deay
Fry, tine Resolution:
Assue $\psi(t)$ is centent arad 0

Assine $U_{(}(t)$ is centewe arod 0 . To-t

$$
\psi_{u, s}=\psi\left(\frac{t-u}{s}\right) \text { centened and u }
$$

Car show: $\left.\int_{-\infty}^{+\infty}(t-u)\right|_{u, s}(t) \mid d t=s^{2} \sigma^{2} t$

$$
c_{t}^{2} \triangleq \int_{-\infty}^{+\infty} t^{2}|\psi(t)|^{2} d t
$$

Assme $\psi \in L^{2}(k)$ is analytic ise.

$$
\hat{\psi}(\omega)=0 \quad \text { if } \quad \omega<0
$$

\Rightarrow "center freq" η up $\psi(\omega)$ is

$$
\begin{aligned}
& \Rightarrow \text { "center freq } \\
& \eta \stackrel{1}{2 \pi} \int_{0}^{\alpha} \omega|\hat{\psi}(\omega)|^{2} d \omega \\
& \hat{\psi}(\omega)=\sqrt{s} \quad \hat{\psi}(s \omega) e-j \omega u
\end{aligned}
$$

Enery spored of $\hat{\psi}(u, s)$ aroul $\frac{1}{s}$ is

$$
\begin{aligned}
& \text { Enery spred of } \begin{array}{l}
\frac{1}{2 \pi} \int_{0}^{\infty}(u, s) \text { arow } \bar{s} \\
\quad G_{\omega}^{2}=\frac{1}{2 \pi} \int_{0}^{2}(\omega-\eta)|\hat{\psi}(\omega)|^{2} d \omega=\frac{\sigma_{\omega}^{2}}{s^{2}}
\end{array} .\left\{\begin{array}{l}
\left.\hat{\psi}(\omega)\right|^{2} d \omega
\end{array}\right.
\end{aligned}
$$

Cout Evergy Spurd of wavelet TL
$U_{n, s}$ conuputes To hisablseg bax content $\left(u, \frac{n}{s}\right)$ at size SGt along time and $\frac{G_{w}}{s}$ along frey

