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A Markov Chain that has its states hidden (or latent) is called a Hidden Markov Model
(HMM). The Xi are state variables and belong to a state space X (discrete), while the Yi
are observations with yi ∈ Y , where Y may or may not be discrete.
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Figure 1: Graphical Model for HMMs

Due to the structure of the HMM as indicated by the above graphical model, we can simplify
our probabilities a lot. This will be very useful!

Example: If we had n = 2, then the joint probability P(x0, y0, x1, y1) would be

P(x0, y0, x1, y1) = P(x0)P(y0|x0)P(x1|x0, y0)P(y1|x1, x0, y0) = P(x0)P(y0|x0)P(x1|x0)P(y1|x1).

In general, for n states and corresponding observations (excluding state 0), we have

P(x0, x1, . . . , xn, y0, y1, . . . , yn) = π0(x0)Q(x0, y0)P (x0, x1)Q(x1, y1) . . . P (xn−1, xn)Q(xn, yn)

where π0 specifies the distribution for our initial state, Q models our transition probabilities
between hidden states and observations, and P models transitions between hidden states.

HMMs can be used for inference in the following forms.

• Filtering: We feed in Y0, Y1, . . . , YT to our filter and want to find X̂T , the last hidden
state. Some examples are tracking positions in real time or monitoring the current
health of a patient given symptoms {Y0}Ti=0.
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• Prediction: We feed in Y0, Y1, . . . , YT and want to predict ŶT+1. Some examples are
radar tracking, stock price predictions, or predictive coding.

• Smoothing: We feed in Y0, Y1, . . . , YT and want to find X̂t for a choice of t ≤ T . Some
examples are inferring the cause of a car-crash or “post-mortem” analysis.

• MLSE (Maximum Likelihood Sequence Estimation): We feed in Y0, Y1, . . . , YT
and want to find the most likely sequence X̂0, X̂1, . . . , X̂T that explains our observa-
tions. In other words, we want MAP [Xn|Y n = yn], to infer the best sequence of
(hidden) states that best explains the observed sequence. This differs from smoothing,
where we only care about maximizing over a single hidden state.

Some example applications of finding the MLSE are speech recognition, auto-correction,
and convolutional coding with the Viterbi algorithm. In speech recognition, we observe
(or listen to) the sounds, and our goal is to find the most likely sequence of words cor-
responding to the sounds.

In this note, we will focus on MLSE.

The Viterbi Algorithm

The MLSE is given by

xn
∗

= arg max
xn∈Xn

P[Xn = xn|Y n = yn]

= arg max
xn∈Xn

[π0Q(x0, y0)P (x0, x1)Q(x1, y1) . . . P (xn−1, xn)Q(xn, yn)]

= arg max
xn∈Xn

[
log π0(x0)Q(x0, y0) +

n∑
m=1

log [P (xm−1, xm)Q(xm, ym)]

]
,

where the last equation is obtained by taking a log (which is allowed because log is a mono-
tonically increasing function). To make the expression more compact, let’s define

d0(x0) = − log π0(x0)Q(x0, y0)

dm(xm−1, xm) = − log [P (xm−1, xm)Q(xm, ym)] .

Note that all the di’s are positive. Thus, we have the following.

MLSE Estimate: Finding the maximum likelihood sequence estimate reduces to solving
the following optimization problem:

xn
∗

= arg min
xn

[
d0(x0) +

n∑
m=1

dm(xm−1, xm)

]
.
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Example: Say you’re at a “nearly honest casino” which uses a fair die most of the time,
but switches to a loaded die occasionally. We can model their transitions between the fair
die (F ) and the loaded die (L) as the Markov Chain in Figure 2.

F L
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Figure 2: “Nearly Honest” Casino

Additionally, we know that for the fair die, the probability of each outcome is equally likely,
so P(F = i) = 1

6
for i = 1, . . . , 6. For the loaded die, we know that P(L = 6) = 1

2
and

P(L = 1) = · · · = P(L = 5) = 1
10

so that the die is biased towards rolling a 6.

Suppose we know the casino starts with a fair die (F ). Given an observed sequence of die
rolls (say 6, 6, 1, 6, 2, . . . ), we want to infer the most likely sequence of “hidden” states (say
F, F, L, F, L, . . . ).

We can use a technique called a “trellis” diagram, which looks like this (green nodes corre-
spond to the fair die, while red nodes correspond to the loaded die):
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Figure 3: Trellis Diagram
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Figure 4: One “Stage” of the Trellis Diagram
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To find the minimum length path from stage 0 to stage n, we need a good shortest path
algorithm. Bellman-Ford seems like a good choice, especially since its dynamic programming
nature lends itself very well to such a calculation (recall that shortest paths on DAGs are best
solved by dynamic programming). This technique of filling out the diagram and finding the
MLSE using a dynamic programming method was first discovered by Viterbi and is referred
to as the Viterbi Algorithm.

First, we need to calculate the edge weights, that is, all the dm’s. For illustrative purposes,
we assign nice numbers for the edge weights in the trellis diagram below. In reality, we would
perform the following computation for each m, where the P ’s are given by the Markov chain
in Figure 2 and the Q’s are given by the probabilities of each side for the fair and loaded die:

dm(F, F ) = − log [P (F, F )Q(F, Ym)]

dm(F,L) = − log [P (F,L)Q(L, Ym)]

dm(L, F ) = − log [P (L, F )Q(F, Ym)]

dm(L,L) = − log [P (L,L)Q(L, Ym)]
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Figure 5: Obtaining the MLSE Estimate

The circled numbers above each stage are the observations, and the numbers in parentheses
along every edge are the weights. The boxed numbers are the shortest path values from that
node to the final stage; green numbers represent transitions to a fair die, while red numbers
represent transitions to a loaded die. Our initial transition from the origin to L has distance
infinity because we’re told that the casino will start with a fair die.

If we work our way back through this diagram, we see that the MLSE estimate is (F, F, L, F, L).

Finally, we can do a quick analysis of how much time each of these methods take. The cost
of populating the trellis is O(N2n), where N is the number of states and n is the number of
stages. If we have a populated trellis, it only takes O(Nn) to find the shortest path (since we
only have one node at each stage to consider). In contrast, a naive algorithm that iterates
over all possible sequences takes O(Nn) time; we have turned a computationally infeasible
problem into a pretty efficient one!
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