UC Berkeley
Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Discussion 10

Spring 2019

1. Generating Erdös-Renyi Random Graphs

True/False: Let G_{1} and G_{2} be independent Erdös-Renyi random graphs on n vertices with probabilities p_{1} and p_{2}, respectively. Let $G=G_{1} \cup G_{2}$, that is, G is generated by combining the edges from G_{1} and G_{2}. Then, G is an Erdös-Renyi random graph on n vertices with probability $p_{1}+p_{2}$.

2. Isolated Vertices

Consider a Erdös-Renyi random graph $\mathcal{G}(n, p(n))$, where n is the number of vertices and $p(n)$ is the probability that a specific edge appears in the graph. Let X_{n} be the number of isolated vertices in $\mathcal{G}(n, p(n))$. Show that

$$
\mathbb{E}\left[X_{n}\right] \xrightarrow{n \rightarrow \infty} \begin{cases}\infty, & p(n) \ll \frac{\ln n}{n}, \\ \exp (-c), & p(n)=\frac{\ln n+c}{n}, \\ 0, & p(n) \gg \frac{\ln n}{n},\end{cases}
$$

where the notation $p(n) \ll f(n)$ means that $p(n) / f(n) \rightarrow 0$ as $n \rightarrow \infty$, and $p(n) \gg f(n)$ means $p(n) / f(n) \rightarrow \infty$ as $n \rightarrow \infty$. Show also that in the third case, $p(n) \gg(\ln n) / n$, we have $X_{n} \rightarrow 0$ in probability as well.

3. Sub-Critical Forest

Consider a random graph $\mathcal{G}(n, p(n))$ where $p(n) \ll 1 / n$ (this is called the sub-critical phase). Show that the probability that $\mathcal{G}(n, p(n))$ is a forest, i.e. contains no cycles, tends to 1 as $n \rightarrow \infty$. [If X_{n} is the number of cycles, compute $\mathbb{E}\left[X_{n}\right]$ and show that $\mathbb{E}\left[X_{n}\right] \rightarrow 0$. Then, apply the First Moment Method.]

