UC Berkeley
 Department of Electrical Engineering and Computer Sciences
 EECS 126: Probability and Random Processes

Discussion 12

Spring 2019

1. Hypothesis Testing for Gaussian Distribution

Assume that X has prior probabilities $\mathbb{P}(X=0)=\mathbb{P}(X=1)=1 / 2$. Further

- If $X=0$, then $Y \sim \mathcal{N}\left(\mu_{0}, \sigma_{0}^{2}\right)$.
- If $X=1$, then $Y \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$.

Assume $\mu_{0}<\mu_{1}$ and $\sigma_{0}<\sigma_{1}$.
Using the Bayesian formulation of hypothesis testing, find the optimal decision rule $r: \mathbb{R} \rightarrow\{0,1\}$ with respect to the minimum expected cost criterion

$$
\min _{r: \mathbb{R} \rightarrow\{0,1\}} \mathbb{E}[I\{r(Y) \neq X\}] .
$$

2. Hypothesis Testing for Uniform Distribution

Assume that

- If $X=0$, then $Y \sim$ Uniform $[-1,1]$.
- If $X=1$, then $Y \sim$ Uniform $[0,2]$.

Using the Neyman-Pearson formulation of hypothesis testing, find the optimal randomized decision rule $r:[-1,2] \rightarrow\{0,1\}$ with respect to the criterion

$$
\begin{aligned}
\min _{\text {randomized } r:[-1,2] \rightarrow\{0,1\}} \mathbb{P}(r(Y) & =0 \mid X=1) \\
\text { s.t. } \mathbb{P}(r(Y) & =1 \mid X=0) \leq \beta
\end{aligned}
$$

where $\beta \in[0,1]$ is a given upper bound on the false positive probability.

3. Cauchy-Schwarz Inequality

In this problem, we will introduce an important inequality called the CauchySchwarz Inequality. Let X, Y be random variables with finite non-zero variance. Then, the inequality states that $|\mathbb{E}[X Y]| \leq \sqrt{\mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]}$.
(a) Starting with the simple facts $\mathbb{E}\left[(X-Y)^{2}\right] \geq 0$ and $\mathbb{E}\left[(X+Y)^{2}\right] \geq 0$, show that

$$
\begin{equation*}
|\mathbb{E}[X Y]| \leq \frac{\mathbb{E}\left[X^{2}\right]+\mathbb{E}\left[Y^{2}\right]}{2} \tag{1}
\end{equation*}
$$

(b) Actually, $\left(\mathbb{E}\left[X^{2}\right]+\mathbb{E}\left[Y^{2}\right]\right) / 2 \geq \sqrt{\mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]}$ by a famous inequality known as the Arithmetic Mean-Geometric Mean (AM-GM) Inequality, so our bound is too loose. We can sharpen it by observing that the LHS is unchanged if we replace X by λX and Y by Y / λ (where $\lambda>0$). Applying the above bound to λX and Y / λ instead, optimize over $\lambda>0$ to deduce the Cauchy-Schwarz Inequality.

