UC Berkeley

Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Discussion 12

Spring 2019

1. Hypothesis Testing for Gaussian Distribution

Assume that X has prior probabilities $\mathbb{P}(X=0) = \mathbb{P}(X=1) = 1/2$. Further

- If X = 0, then $Y \sim \mathcal{N}(\mu_0, \sigma_0^2)$.
- If X = 1, then $Y \sim \mathcal{N}(\mu_1, \sigma_1^2)$.

Assume $\mu_0 < \mu_1$ and $\sigma_0 < \sigma_1$.

Using the Bayesian formulation of hypothesis testing, find the optimal decision rule $r: \mathbb{R} \to \{0,1\}$ with respect to the minimum expected cost criterion

$$\min_{r:\mathbb{R}\to\{0,1\}} \ \mathbb{E}[I\{r(Y)\neq X\}].$$

2. Hypothesis Testing for Uniform Distribution

Assume that

- If X = 0, then $Y \sim \text{Uniform}[-1, 1]$.
- If X = 1, then $Y \sim \text{Uniform}[0, 2]$.

Using the Neyman-Pearson formulation of hypothesis testing, find the optimal randomized decision rule $r: [-1,2] \to \{0,1\}$ with respect to the criterion

$$\min_{\text{randomized } r:[-1,2]\to\{0,1\}} \mathbb{P}(r(Y) = 0 \mid X = 1)$$
s.t. $\mathbb{P}(r(Y) = 1 \mid X = 0) \le \beta$,

where $\beta \in [0,1]$ is a given upper bound on the false positive probability.

3. Cauchy-Schwarz Inequality

In this problem, we will introduce an important inequality called the **Cauchy-Schwarz Inequality**. Let X, Y be random variables with finite non-zero variance. Then, the inequality states that $|\mathbb{E}[XY]| \leq \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}$.

(a) Starting with the simple facts $\mathbb{E}[(X-Y)^2] \ge 0$ and $\mathbb{E}[(X+Y)^2] \ge 0$, show that

$$|\mathbb{E}[XY]| \le \frac{\mathbb{E}[X^2] + \mathbb{E}[Y^2]}{2}.\tag{1}$$

(b) Actually, $(\mathbb{E}[X^2] + \mathbb{E}[Y^2])/2 \ge \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}$ by a famous inequality known as the Arithmetic Mean-Geometric Mean (AM-GM) Inequality, so our bound is too loose. We can sharpen it by observing that the LHS is unchanged if we replace X by λX and Y by Y/λ (where $\lambda > 0$). Applying the above bound to λX and Y/λ instead, optimize over $\lambda > 0$ to deduce the Cauchy-Schwarz Inequality.