UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Discussion 13 Spring 2019

1. Orthogonal LLSE

(a) Consider zero-mean random variables X,Y,Z such that Y,Z are orthogonal. Show that $L[X\mid Y,Z]=L[X\mid Y]+L[X\mid Z].$

(b) Show that for any zero-mean random variables X, Y, Z it holds that:

$$L[X \mid Y, Z] = L[X \mid Y] + L[X \mid Z - L[Z \mid Y]]$$

2. Gaussian Estimation

Let Y = X + Z and U = X - Z, where X and Z are i.i.d. $\mathcal{N}(0,1)$.

(a) Find the joint distribution of U and Y.

(b) Find the MMSE of X given the observation Y, call this $\hat{X}(Y)$.

(c) Let the estimation error $E = X - \hat{X}(Y)$. Find the conditional distribution of E given Y.

3. Joint Gaussian Probability

Let $X \sim \mathcal{N}(1,1)$ and $Y \sim \mathcal{N}(0,1)$ be jointly Gaussian with covariance ρ . What is $\mathbb{P}(X > Y)$?