UC Berkeley
Department of Electrical Engineering and Computer Sciences
EECS 126: Probability and Random Processes
Discussion 13
Spring 2019

1. Orthogonal LLSE

(a) Consider zero-mean random variables X, Y, Z such that Y, Z are orthogonal. Show that $L[X \mid Y, Z]=L[X \mid Y]+L[X \mid Z]$.
(b) Show that for any zero-mean random variables X, Y, Z it holds that:

$$
L[X \mid Y, Z]=L[X \mid Y]+L[X \mid Z-L[Z \mid Y]]
$$

2. Gaussian Estimation

Let $Y=X+Z$ and $U=X-Z$, where X and Z are i.i.d. $\mathcal{N}(0,1)$.
(a) Find the joint distribution of U and Y.
(b) Find the MMSE of X given the observation Y, call this $\hat{X}(Y)$.
(c) Let the estimation error $E=X-\hat{X}(Y)$. Find the conditional distribution of E given Y.

3. Joint Gaussian Probability

Let $X \sim \mathcal{N}(1,1)$ and $Y \sim \mathcal{N}(0,1)$ be jointly Gaussian with covariance ρ. What is $\mathbb{P}(X>Y)$?

