UC Berkeley
Department of Electrical Engineering and Computer Sciences
EECS 126: Probability and Random Processes
Discussion 2
Spring 2019

1. Poisson Merging

The Poisson distribution is used to model rare events, such as the number of customers who enter a store in the next hour. The theoretical justification for this modeling assumption is that the limit of the binomial distribution, as the number of trials n goes to ∞ and the probability of success per trial p goes to 0 , such that $n p \rightarrow \lambda>0$, is the Poisson distribution with mean λ.

Now, suppose we have two independent streams of rare events (for instance, the number of female customers and male customers entering a store), and we do not care to distinguish between the two types of rare events. Can the combined stream of events be modeled as a Poisson distribution?
Mathematically, let X and Y be independent Poisson random variables with means λ and μ respectively. Prove that $X+Y \sim \operatorname{Poisson}(\lambda+\mu)$. (This is known as Poisson merging.) Note that it is not sufficient to use linearity of expectation to say that $X+Y$ has mean $\lambda+\mu$. You are asked to prove that the distribution of $X+Y$ is Poisson.

Note: This property will be extensively used when we discuss Poisson processes.

2. Sampling without Replacement

Suppose you have N items, G of which are good and B of which are bad (B, G, and N are positive integers, $B+G=N$). You start to draw items without replacement, and suppose that the first good item appears on draw X. Compute the mean and variance of X.

3. Clustering Coefficient

This problem will explore an important probabilistic concept of clustering that is widely used in machine learning applications today. Consider n students, where n is a positive integer. For each pair of students $i, j \in\{1, \ldots, n\}, i \neq j$, they are friends with probability p, independently of other pairs. We assume that friendship is mutual. We can see that the friendship among the n students can be represented by an undirected graph G. Let $N(i)$ be the number of friends of student i and $T(i)$ be the number of triangles attached to student i. We define the clustering coefficient $C(i)$ for student i as follows:

$$
C(i)=\frac{T(i)}{\binom{N(i)}{2}}
$$

Figure 1: Friendship and clustering coefficient.
The clustering coefficient is not defined for the students who have no friends. An example is shown in Figure 1. Student 3 has 4 friends $(1,2,4,5)$ and there are two triangles attached to student 3, i.e., triangle 1-2-3 and triangle 2-3-4. Therefore $C(3)=2 /\binom{4}{2}=1 / 3$.
Find $\mathbb{E}[C(i) \mid N(i) \geq 2]$.

