UC Berkeley

Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Discussion 3

Spring 2019

1. Triangle Density

Consider random variables X and Y which have a joint PDF uniform on the triangle with vertices at (0,0),(1,0),(0,1).

- (a) Find the joint PDF of X and Y.
- (b) Find the marginal PDF of Y.
- (c) Find the conditional PDF of X given Y.
- (d) Find $\mathbb{E}[X]$ in terms of $\mathbb{E}[Y]$.
- (e) Find $\mathbb{E}[X]$.

2. Change of Variables

(a) Suppose that X has the **standard normal distribution**, that is, X is a continuous random variable with density function

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

What is the density function of $\exp X$? (The answer is called the **lognor-mal distribution**.)

- (b) Suppose that X is a continuous random variable with density f. What is the density of X^2 ?
- (c) What is the answer to the previous question when X has the standard normal distribution? (This is known as the **chi-squared distribution**.)

3. Order Statistics

For n a positive integer, let X_1, \ldots, X_n be i.i.d. continuous random variables with common PDF f and CDF F. For $i = 1, \ldots, n$, let $X^{(i)}$ be the ith smallest of X_1, \ldots, X_n , so we have $X^{(1)} \leq \cdots \leq X^{(n)}$. $X^{(i)}$ is known as the ith order statistic.

- (a) What is the CDF of $X^{(i)}$?
- (b) Differentiate the CDF to obtain the PDF of $X^{(i)}$.
- (c) Can you obtain the PDF of $X^{(i)}$ directly?