UC Berkeley
 Department of Electrical Engineering and Computer Sciences
 EECS 126: Probability and Random Processes

Discussion 3
Spring 2019

1. Triangle Density

Consider random variables X and Y which have a joint PDF uniform on the triangle with vertices at $(0,0),(1,0),(0,1)$.
(a) Find the joint PDF of X and Y.
(b) Find the marginal PDF of Y.
(c) Find the conditional PDF of X given Y.
(d) Find $\mathbb{E}[X]$ in terms of $\mathbb{E}[Y]$.
(e) Find $\mathbb{E}[X]$.

2. Change of Variables

(a) Suppose that X has the standard normal distribution, that is, X is a continuous random variable with density function

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

What is the density function of $\exp X$? (The answer is called the lognormal distribution.)
(b) Suppose that X is a continuous random variable with density f. What is the density of X^{2} ?
(c) What is the answer to the previous question when X has the standard normal distribution? (This is known as the chi-squared distribution.)

3. Order Statistics

For n a positive integer, let X_{1}, \ldots, X_{n} be i.i.d. continuous random variables with common PDF f and CDF F. For $i=1, \ldots, n$, let $X^{(i)}$ be the i th smallest of X_{1}, \ldots, X_{n}, so we have $X^{(1)} \leq \cdots \leq X^{(n)} . X^{(i)}$ is known as the i th order statistic.
(a) What is the CDF of $X^{(i)}$?
(b) Differentiate the CDF to obtain the PDF of $X^{(i)}$.
(c) Can you obtain the PDF of $X^{(i)}$ directly?

