UC Berkeley

Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Discussion 9

Spring 2019

1. Poisson Practice

Let $(N(t), t \ge 0)$ be a Poisson process with rate λ . Let T_k denote the time of k-th arrival, for $k \in \mathbb{N}$, and given $0 \le s < t$, we write N(s,t) = N(t) - N(s). Compute:

- (a) $\mathbb{P}(N(1) + N(2,4) + N(3,5) = 0)$.
- (b) $\mathbb{E}(N(1,3) \mid N(1,2) = 3)$.
- (c) $\mathbb{E}(T_2 \mid N(2) = 1)$.

2. Illegal U-Turns

Each morning, as you pull out of your driveway, you would like to make a U-turn rather than drive around the block. Unfortunately, U-turns are illegal and police cars drive by according to a Poisson process with rate λ . You decide to make a U-turn once you see that the road has been clear of police cars for $\tau > 0$ units of time. Let N be the number of police cars you see before you make a U-turn.

- (a) Find $\mathbb{E}[N]$.
- (b) Let n be a positive integer ≥ 2 . Find the conditional expectation of the time elapsed between police cars n-1 and n, given that $N\geq n$.
- (c) Find the expected time that you wait until you make a U-turn.

3. Continuous-Time Markov Chains: Introduction

Consider the continuous-time Markov process with state space $\{1,2,3,4\}$ and the rate matrix

$$Q = \begin{bmatrix} -3 & 1 & 1 & 1 \\ 0 & -3 & 2 & 1 \\ 1 & 2 & -4 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}.$$

- (a) Find the stationary distribution p of the Markov process.
- (b) Find the stationary distribtion π of the jump chain, i.e., the discrete-time Markov chain which only keeps track of the jumps of the CTMC. Formally, if the CTMC $(X(t))_{t\geq 0}$ jumps at times T_1, T_2, T_3, \ldots , then the DTMC is defined as $(Y_n)_{n=1}^{\infty}$ where $Y_n := X_{T_n}$.
- (c) Suppose the chain starts in state 1. What is the expected amount of time until it changes state for the first time?
- (d) Again assume the chain starts in state 1. What is the expected amount of time until the chain is in state 4?

1