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1. Midterm

Solve all of the problems on the midterm again (including the ones you got
correct).

2. Exponential: MLE & MAP

The random variable X is exponentially distributed with mean 1. Given X,
the random variable Y is exponentially distributed with rate X.

(a) Find MLE[X | Y ].

(b) Find MAP[X | Y ].

3. BSC: MLE & MAP

You are testing a digital link that corresponds to a BSC with some error
probability ε ∈ [0, 0.5].

(a) Assume you observe the input and the output of the link. How do you
find the MLE of ε?

(b) You are told that the inputs are i.i.d. bits that are equal to 1 with
probability 0.6 and to 0 with probability 0.4. You observe n outputs (n is
a positive integer). How do you calculate the MLE of ε?

(c) The situation is as in the previous case, but you are told that ε has PDF
4− 8x on [0, 0.5). How do you calculate the MAP of ε given n outputs?

4. Fun with Linear Regression

Suppose f : Rd → R is an unknown linear function, i.e. it is of the form
f(x) = x>w = x1w1 + · · · + xdwd, where w ∈ Rd is the unknown parameter
of the linear function. We pick n points x(1), . . . , x(n) ∈ Rd, and we observe
y(1), . . . , y(n) ∈ R that are generated according to the model

y(i) = f
(
x(i)
)
+εi, for i = 1, . . . , n,

where ε1, . . . , εn are i.i.d. N (0, σ2) random variables.

Let us first estimate w when we have no prior information about it.

(a) Compute the likelihood of the parameter w given the data {(x(i), y(i))}ni=1

L(w | {(x(i), y(i))}ni=1) :=
n∏

i=1

p
(
y(i)

∣∣ x(i);w).
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(b) Explicitly define a matrix X ∈ Rn×d and a vector y ∈ Rn such that the
optimal points of the problem

min
w∈Rd

‖Xw − y‖22,

correspond to the maximizers of the likelihood.

Now assume a zero-mean Gaussian prior for each wi, i = 1, . . . , d. In partic-
ular assume that w1, . . . , wd are i.i.d. N (0, τ2), and they are also independent
of the data.

(c) Compute, up to a normalization constant, the posterior distribution of w
given the data {(x(i), y(i))}ni=1.

(d) Explicitly define a matrix X ∈ Rn×d, a vector y ∈ Rn and a positive
scalar λ ∈ R such that the optimal point of the problem

min
w∈Rd

‖Xw − y‖22 + λ‖w‖22,

correspond to the maximizer of the posterior distribution of w.

5. Community Detection Using MAP

It will be useful to work on this problem in conjunction with Q3 of Lab 6. The
stochastic block model (SBM), as defined in Lab 6 is a random graph G(n, p, q)
consisting of two communities of size n/2 each such that the probability an
edge exists between two nodes of the same community is p and the probability
an edge exists between two nodes in different communities is q, where p > q.
The goal of the problem is to exactly determine the two communities given only
the graph. Show that the MAP estimate of the two communities is equivalent
to finding the min-bisection of the graph (i.e. the split of G into two groups of
size n/2 that has the minimum edge weight across the partition).

6. [Bonus] Bayesian Estimation of Poisson Distribution

The bonus question is just for fun. You are not required to submit the bonus
question, but do give it a try and write down your progress.

We have already learned about MLE (non-Bayesian perspective) and MAP
(Bayesian perspective). In this problem, we will introduce the fully Bayesian
approach to statistical estimation.

Suppose that Xi, i = 1, . . . , n, are i.i.d. drawn from a Poisson distribution of
unknown mean M (M is a random variable). As a Bayesian practitioner, you
have a prior belief that M is Erlang of order k and rate α.

(a) Find the posterior distribution fM |X(µ | x1, . . . , xn).

(b) If we were using the MLE or MAP rule, then we would choose a single
value µ for M ; this is sometimes called a point estimate. This amounts to
saying X has the Poisson distribution with mean µ.
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In the Bayesian approach, we will not use a point estimate. Instead, we
will keep the full information of the posterior distribution of µ, and we
compute the distribution of X as

P(X = x) =

∫ ∞
0

P(X = x |M = µ)fM |X(µ | x1, . . . , xn) dµ.

Notice that in the Bayesian approach, we do not necessarily have a Poisson
distribution for X anymore. Compute P(X = x) in closed-form.

(c) You may have noticed from the previous part that the fully Bayesian
approach is often computationally intractable. This is one of the main
reasons why point estimates are common in practice.

Compute the MAP estimate for M and calculate P(X = x) again using
the MAP rule.
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