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1. Higher-Order Markov Chains

Let k be a fixed positive integer. A stochastic process (Xn)n∈N taking values in
a discrete state space X is called a kth order (time homogeneous) Markov
chain if for all n ∈ N and all feasible sequences x0, x1, . . . , xn+k ∈ X ,

P(Xn+k = xn+k | X0 = x0, X1 = x1, . . . , Xn+k−1 = xn+k−1)

= P(Xn+k = xn+k | Xn = xn, . . . , Xn+k−1 = xn+k−1)

= Pk(xn+k | xn, . . . , xn+k−1).

In other words, the transition to the next state depends only on the previous
k states. For example, if Xn represents the position of a particle moving
with constant velocity at time n, then the system is a second-order Markov
chain because the previous two position measurements are needed to infer the
particle’s velocity.

Show that we can “embed” (Xn)n∈N into a first-order Markov chain (Zn)n∈N
with an augmented state space, in the sense that Xn can be recovered from Zn.
This allows us to apply algorithms such as the Viterbi algorithm to systems
with higher orders of dependence.

2. Hidden Markov Models

A hidden Markov model (HMM) is a Markov chain {Xn}∞n=0 in which the states
are considered “hidden” or “latent”. In other words, we do not directly observe
{Xn}∞n=0. Instead, we observe {Yn}∞n=0, where Q(x, y) is the probability that
state x will emit observation y. π0 is the initial distribution for the Markov
chain, and P is the transition matrix.

(a) What is P(X0 = x0, Y0 = y0, . . . , Xn = xn, Yn = yn), where n is a positive
integer, x0, . . . , xn are hidden states, and y0, . . . , yn are observations?

(b) What is P(X0 = x0 | Y0 = y0)?

(c) We observe (y0, . . . , yn) and we would like to find the most likely sequence
of hidden states (x0, . . . , xn) which gave rise to the observations. Let

U(xm,m) = max
xm+1,...,xn∈X

P(Xm = xm, Xm+1:n = xm+1:n, Y0:n = y0:n)

denote the largest probability for a sequence of hidden states beginning at
state xm at time m ∈ N, along with the observations (y0, . . . , yn). Develop
a recursion for U(xm,m) in terms of U(xm+1,m+ 1), xm+1 ∈ X .
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3. Most Likely Sequence of States

In this problem, we give an example of an HMM and a sequence of observations
which demonstrates that the most likely sequence of hidden states (i.e., the
output of the Viterbi algorithm) is not the same as computing the most likely
state at each time. Your task is to verify that the following example works:

Consider a HMM with two states {0, 1} and the hidden state is observed through
a BSC with error probability 1/3. The hidden state transitions according to
P (0, 0) = P (1, 1) = 3/4. Assume that the initial state is equally likely to be 0
or 1. We see the observation 0 at time 0 and 1 at time 1.

4. Cheapest Fare using HMM

Companies A and B run identical buses in Berkeley, where company A has
higher fares. The number of people in buses run by company A and B is a
Poisson random variable with rate 10 and 20, respectively. You are counting
the number of people on the buses at a bus-stop where only one bus comes
each hour; let Xk be the bus company and Nk be the number of people in
the k-th hour, respectively. A Markov chain with transition probabilities
P (Xk+1 = B|Xk = A) = 0.7 and P (Xk+1 = A|Xk = B) = 0.8 determines the
company of buses arriving.

(a) Let the initial state be X1 = A. What is P (X2 = A|N2 = 13)?

(b) Assuming that the initial state was X1 = A, say you observed the number
of people N1 = 7, N2 = 21 and N3 = 9 in the first three hours. What is your
MLSE estimate for the sequence of first three buses?

(c) You board the bus in the fourth hour. Assuming that the most likely
sequence is true, what is the probability that you board the bus with a cheaper
fare?
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