UC Berkeley
 Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Problem Set 3

Spring 2019

Issued: February 7, 2019
Due: 11:59 PM, Wedenesday, February 13, 2019

1. Graphical Density

Figure 1 shows the joint density $f_{X, Y}$ of the random variables X and Y.

Figure 1: Joint density of X and Y.
(a) Find A and sketch f_{X}, f_{Y}, and $f_{X \mid X+Y \leq 3}$.
(b) Find $\mathbb{E}[X \mid Y=y]$ for $1 \leq y \leq 3$ and $\mathbb{E}[Y \mid X=x]$ for $1 \leq x \leq 4$.
(c) Find $\operatorname{cov}(X, Y)$.

2. Conditional Distribution of a Poisson Random Variable with Exponentially Distributed Parameter

Let X have a Poisson distribution with parameter $\lambda>0$. Suppose λ itself is random, having an exponential density with parameter $\theta>0$.
(a) Show that

$$
\mathbb{E}\left(\lambda^{k}\right)=\frac{k!}{\theta^{k}}, \quad k \in \mathbb{N}
$$

(b) What is the distribution of X ?
(c) Determine the conditional density of λ given $X=k$, where $k \in \mathbb{N}$.

3. Gaussian Densities

(a) Let $X_{1} \sim \mathcal{N}\left(0, \sigma_{1}^{2}\right), X_{2} \sim \mathcal{N}\left(0, \sigma_{2}^{2}\right)$, where X_{1} and X_{2} are independent. Convolve the densities of X_{1} and X_{2} to show that $X_{1}+X_{2} \sim \mathcal{N}\left(0, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.
(b) Show that all linear combinations of i.i.d. finitely many Gaussians are Gaussian.
(c) Let $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$; find $\mathbb{E}\left[X^{n}\right]$ for $n \in \mathbb{N}$.
(d) Let $Z \sim \mathcal{N}(0,1)$. For a random vector $\left(X_{1}, \ldots, X_{n}\right)$ where n is a positive integer and X_{1}, \ldots, X_{n} are real-valued random variables, the expectation of $\left(X_{1}, \ldots, X_{n}\right)$ is the vector of elementwise expectations of each random variable and the covariance matrix of $\left(X_{1}, \ldots, X_{n}\right)$ is the $n \times n$ matrix whose (i, j) entry is $\operatorname{cov}\left(X_{i}, X_{j}\right)$ for all $i, j \in\{1, \ldots, n\}$. Find the mean and covariance matrix of ($Z, \mathbb{1}\{Z>c\}$) in terms of ϕ and Φ, the standard Gaussian PDF and CDF respectively.

4. Joint Density for Exponential Distribution

(a) If $X \sim \operatorname{Exp}(\lambda)$ and $Y \sim \operatorname{Exp}(\mu), X$ and Y independent, compute $\mathbb{P}(X<$ $Y)$.
(b) If $X_{k}, 1 \leq k \leq n$ are exponentially distributed with parameters $\lambda_{1}, \ldots, \lambda_{n}$, show that,

$$
\mathbb{P}\left(X_{i}=\min _{1 \leq k \leq n} X_{k}\right)=\frac{\lambda_{i}}{\sum_{j=1}^{n} \lambda_{j}}
$$

5. Matrix Sketching

Matrix sketching is an important technique in randomized linear algebra to do large computations efficiently. For example, to compute the multiplication $\mathbf{A}^{T} \times \mathbf{B}$ of two large matrices \mathbf{A} and \mathbf{B}, we can use a random sketch matrix \mathbf{S} to compute a "sketch" SA of A and a "sketch" SB of B. Such a sketching matrix has the property that $\mathbf{S}^{T} \mathbf{S} \approx \mathbf{I}$ so that the approximate multiplication $\mathbf{A}^{T} \mathbf{S}^{T} \mathbf{S B}$ is close to $\mathbf{A}^{T} \mathbf{B}$.

In this problem, we will discuss two popular sketching schemes and understand how they help in approximate computation. Let $\hat{\mathbf{I}}=\mathbf{S}^{T} \mathbf{S}$ and the dimension of sketch matrix \mathbf{S} be $d \times n$ (typically $d \ll n$).
(a) (Gaussian-sketch) Define

$$
\mathbf{S}=\frac{1}{\sqrt{d}}\left[\begin{array}{cccc}
S_{11} & \ldots & \ldots & S_{1 n} \\
\vdots & \ddots & & \vdots \\
S_{d 1} & \ldots & \ldots & S_{d n}
\end{array}\right]
$$

such that $S_{i j}$'s are chosen i.i.d. from $\mathcal{N}(0,1)$ for all $i \in[1, d]$ and $j \in[1, n]$. Find the element-wise mean and variance of the matrix $\hat{\mathbf{I}}=\mathbf{S}^{T} \mathbf{S}$, that is, find $\mathbb{E}\left[\hat{I}_{i j}\right]$ and $\operatorname{Var}\left[\hat{I}_{i j}\right]$ for all $i \in[1, d]$ and $j \in[1, n]$.
(b) (Count-sketch) For each column $j \in[1, n]$ of \mathbf{S}, choose a row i uniformly randomly from $[1, d]$ such that

$$
S_{i j}= \begin{cases}1, & \text { with probability } 0.5 \\ -1, & \text { with probability } 0.5\end{cases}
$$

and assign $S_{k j}=0$ for all $k \neq i$. An example of a 3×8 count-sketch is

$$
\mathbf{S}=\left[\begin{array}{cccccccc}
0 & -1 & 1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1
\end{array}\right]
$$

Again, find the element-wise mean and variance of the matrix $\hat{\mathbf{I}}=\mathbf{S}^{T} \mathbf{S}$.
Note that for sufficiently large d, the matrix $\hat{\mathbf{I}}$ is close to the identity matrix for both cases. We will use this fact in the lab to do an approximate matrix multiplication.
6. Records Let n be a positive integer and $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of i.i.d. continuous random variable with common probability density f_{X}. For any integer $2 \leq k \leq n$, define X_{k} as a record-to-date of the sequence if $X_{k}>X_{i}$ for all $i=1, \ldots, k-1$. (X_{1} is automatically a record-to-date.)
(a) Find the probability that X_{2} is a record-to-date.

Hint: You should be able to do it without rigorous computation.
(b) Find the probability that X_{n} is a record-to-date.
(c) Find the expected number of records-to-date that occur over the first n trials (Hint: Use indicator functions.) Compute this when $n \rightarrow \infty$.

