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1. Transform Practice

Consider a random variable Z with transform

MZ(s) =
a− 3s

s2 − 6s+ 8
, for |s| < 2.

Calculate the following quantities:

(a) The numerical value of the parameter a.

(b) E[Z].

(c) var(Z).

2. Bounds for the Coupon Collector’s Problem

Recall the coupon collector’s problem, where X is a random variable which
is equal to the number of boxes bought until one of every type of coupon is
obtained (there are n total coupons).

The expected value of X is nHn, where Hn is the harmonic number of order n
which is defined as

Hn
∆
=

n∑
i=1

1

i
,

and satisfies the inequalities

lnn ≤ Hn ≤ lnn+ 1.

(a) Use Markov’s inequality in order to show that

P(X > 2nHn) ≤ 1

2
.

(b) Use Chebyshev’s inequality in order to show that

P(X > 2nHn) ≤ π2

6(lnn)2
.

Note: You can use the identity

∞∑
i=1

1

i2
=
π2

6
.
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(c) Define appropriate events and use the union bound in order to show that

P(X > 2nHn) ≤ 1

n
.

Note: The sequence an = (1 − 1/n)n, for n = 1, 2, 3, . . ., is strictly
increasing and limn→∞ an = 1/e.

3. [Bonus] A Chernoff Bound for the Sum of Coin Flips

The bonus question is just for fun. You are not required to submit the bonus
question, but do give it a try and write down your progress.

Note: You will use the final result from this question in problem 4. The
derivation is quite technical (though all the tools needed have been introduced
to you thus far), so we are marking it as an optional exercise to go through.

Let X1, . . . , Xn be i.i.d. Bernoulli(q) random variables with bias q ∈ (0, 1), and
call X their sum, X = X1 + · · ·+Xn, which a Binomial(n, q) random variable,
with mean E[X] = nq.

(a) Let ε > 0 such that q + ε < 1, and define p = q + ε. Show that for any
t > 0,

P(X ≥ pn) ≤ exp
(
−n(tp− lnE[etX1 ])

)
.

(b) The Kullback-Leibler divergence from the distribution Bernoulli(q) to the
distribution Bernoulli(p), is defined as

D(p ‖ q) ∆
= p ln

p

q
+ (1− p) ln

1− p
1− q

.

The Kullback-Leibler divergence can be interpreted as a measure of how
close the two distributions are. One motivation for this interpretation is
that the Kullback-Leibler divergence is always nonnegative, i.e. D(p ‖ q) ≥
0, and D(p ‖ q) = 0 if and only if p = q. So it can be thought of as a
‘distance’ between the two Bernoulli distributions.

Optimize the previous bound over t > 0 and deduce that

P(X ≥ pn) ≤ e−nD(p ‖ q).

(c) Moreover, the Kullback-Leibler divergence is related to the square distance
between the parameters p and q via the following inequality

D(p ‖ q) ≥ 2(p− q)2, for p, q ∈ (0, 1).

Use this inequality in order to deduce that

P
(
X ≥ (q + ε)n

)
≤ e−2nε2 ,

and
P
(
X ≤ (q − ε)n

)
≤ e−2nε2 .

Hint: For the second bound use symmetry in order to avoid doing all the
work again.

2



(d) Conclude that

P(|X − qn| ≥ εn) ≤ 2e−2nε2 .

4. Decoding a Bit from a Noisy Signal

In many wireless communications systems, each receiver listens on a specific
frequency. The bit b sent is represented by a +1 or −1. Unfortunately, noise
from other nearby frequencies can affect the receiver’s signal. A simplified
model for this noise is as follows. There are n other senders. The ith sender
is also trying to send a bit Bi that is represented by +1 or −1. The receiver
obtains the signal S given by

S = b+ w
n∑
i=1

Bi,

where w is constant indicating the power of the bits of the other senders.

In order to decode b from S, we use the following scheme: if S is closer to +1
than −1, the receiver assumes that the bit sent was a +1; if S is closer to −1
than +1, the receiver assumes that the bit sent was a −1; if S is equidistant to
+1 and −1, the receiver fails to recover b.

Assume that all the bits Bi are independent and uniformly distributed over
{+1,−1}.

(a) Show that the probability that the receiver cannot determine b correctly,
is at most 2 exp(− 1

2nw2 ).

Hint: Transform appropriately each Bi in order to use Problem 3.

(b) If we want to ensure that the probability to correctly determine b is at
least 1− δ = 0.999, what condition do we need to impose on the power of
the noise w?

(c) What would be the condition on the power of the noise w, if we have used
Chebyshev’s inequality in order to upper bound the error probability?

(d) Discuss how the analysis of the error probability in (a) compares with the
analysis of the error probability using Chebyshev’s inequality.

5. [Bonus] Gaussian Tail Bounds

The bonus question is just for fun. You are not required to submit the bonus
question, but do give it a try and write down your progress.

Let φ(y) = e−
y2

2√
2π

be the PDF of a standard normal random variable Y ∼
N (0, 1).

(a) Show that for y 6= 0 we have that

φ(y) = −1

y
· φ′(y).

(b) Use (a) to show that

P(Y ≥ t) ≤ 1

t
· e−

t2

2

√
2π
, for all t > 0.
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(c) Use part (a) to show that

(1

t
− 1

t3

)e−
t2

2

√
2π
≤ P(Y ≥ t), for all t > 0.
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