UC Berkeley

Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Problem Set 5

Spring 2019

Issued: February 21, 2019 **Due:** February 27, 2019

1. Midterm

Solve all of the problems on the midterm again (including the ones you got correct).

2. Confidence Interval Comparisons

In order to estimate the probability of a head in a coin flip, p, you flip a coin n times, where n is a positive integer, and count the number of heads, S_n . You use the estimator $\hat{p} = S_n/n$.

(a) You choose the sample size n to have a guarantee

$$\mathbb{P}(|\hat{p} - p| \ge \epsilon) \le \delta.$$

Using Chebyshev Inequality, determine n with the following parameters:

- (i) Compare the value of n when $\epsilon = 0.05$, $\delta = 0.1$ to the value of n when $\epsilon = 0.1$, $\delta = 0.1$.
- (ii) Compare the value of n when $\epsilon = 0.1, \delta = 0.05$ to the value of n when $\epsilon = 0.1, \delta = 0.1$.
- (b) Now, we change the scenario slightly. You know that $p \in (0.4, 0.6)$ and would now like to determine the smallest n such that

$$\mathbb{P}\Big(\frac{|\hat{p}-p|}{p} \le 0.05\Big) \ge 0.95.$$

Use the CLT to find the value of n that you should use.

3. Convergence in Probability

Let $(X_n)_{n=1}^{\infty}$, be a sequence of i.i.d. random variables distributed uniformly in [-1,1]. Show that the following sequences $(Y_n)_{n=1}^{\infty}$ converge in probability to some limit.

- (a) $Y_n = \prod_{i=1}^n X_i$.
- (b) $Y_n = \max\{X_1, X_2, \dots, X_n\}.$
- (c) $Y_n = (X_1^2 + \dots + X_n^2)/n$.

4. Almost Sure Convergence

In this question, we will explore almost sure convergence and compare it to convergence in probability. Recall that a sequence of random variables $(X_n)_{n\in\mathbb{N}}$ converges **almost surely** (abbreviated a.s.) to X if $\mathbb{P}(\lim_{n\to\infty} X_n = X) = 1$.

- (a) Suppose that, with probability 1, the sequence $(X_n)_{n\in\mathbb{N}}$ oscillates between two values $a \neq b$ infinitely often. Is this enough to prove that $(X_n)_{n\in\mathbb{N}}$ does *not* converge almost surely? Justify your answer.
- (b) Suppose that Y is uniform on [-1,1], and X_n has distribution

$$\mathbb{P}(X_n = (y + n^{-1})^{-1} \mid Y = y) = 1.$$

Does $(X_n)_{n=1}^{\infty}$ converge a.s.?

- (c) Define random variables $(X_n)_{n\in\mathbb{N}}$ in the following way: first, set each X_n to 0. Then, for each $k\in\mathbb{N}$, pick j uniformly randomly in $\{2^k,\ldots,2^{k+1}-1\}$ and set $X_j=2^k$. Does the sequence $(X_n)_{n\in\mathbb{N}}$ converge a.s.?
- (d) Does the sequence $(X_n)_{n\in\mathbb{N}}$ from the previous part converge in probability to some X? If so, is it true that $\mathbb{E}[X_n] \to \mathbb{E}[X]$ as $n \to \infty$?

5. Compression of a Random Source

Let $(X_i)_{i=1}^{\infty} \stackrel{\text{i.i.d.}}{\sim} p(\cdot)$, where p is a discrete PMF on a finite set \mathcal{X} . Additionally define the entropy of a random variable X as $H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_2 p(x)$. That is, we define

$$H(X) = \mathbb{E}\Big[\log_2 \frac{1}{p(X)}\Big].$$

(We could also write this as H(p), since the entropy is really a property of the distribution of X.) In this problem, we will show that a random source whose symbols are drawn according to the distribution p can be compressed to H(X) bits per symbol. In the lab, you will implement this coding and compare it to Huffman coding.

(a) Show that

$$-\frac{1}{n}\log_2 p(X_1,\ldots,X_n) \xrightarrow{n\to\infty} H(X_1)$$
 almost surely.

(Here, we are extending the notation $p(\cdot)$ to denote the joint PMF of (X_1, \ldots, X_n) : $p(x_1, \ldots, x_n) := p(x_1) \cdots p(x_n)$.)

(b) Fix $\epsilon > 0$ and define $A_{\epsilon}^{(n)}$ as the set of all sequences $(x_1, \dots, x_n) \in \mathcal{X}^n$ such that:

$$2^{-n(H(X_1)+\epsilon)} \le p(x_1,\ldots,x_n) \le 2^{-n(H(X_1)-\epsilon)}.$$

Show that $\mathbb{P}((X_1,\ldots,X_n)\in A_{\epsilon}^{(n)})>1-\epsilon$ for all n sufficiently large. Consequently, $A_{\epsilon}^{(n)}$ is called the **typical set** because the observed sequences lie within $A_{\epsilon}^{(n)}$ with high probability.

(c) Show that $(1 - \epsilon)2^{n(H(X_1) - \epsilon)} \le |A_{\epsilon}^{(n)}| \le 2^{n(H(X_1) + \epsilon)}$, for n sufficiently large.

Parts (b) and (c) are called the **asymptotic equipartition property** (**AEP**) because they say that there are $\approx 2^{nH(X_1)}$ observed sequences which each have probability $\approx 2^{-nH(X_1)}$. Thus, by discarding the sequences outside of $A_{\epsilon}^{(n)}$, we need only keep track of $2^{nH(X_1)}$ sequences, which means that a length-n sequence can be compressed into $\approx nH(X_1)$ bits, requiring $H(X_1)$ bits per symbol.

(d) (**optional**) Now show that for any $\delta > 0$ and any positive integer n, if $B_n \subseteq \mathcal{X}^n$ is a set with $|B_n| \leq 2^{n(H(X_1) - \delta)}$, then $\mathbb{P}((X_1, \dots, X_n) \in B_n) \to 0$ as $n \to \infty$.

This says that we cannot compress the observed sequences of length n into any set smaller than size $2^{nH(X_1)}$.

[Hint: Consider the intersection of B_n and $A_{\epsilon}^{(n)}$.]

(e) (**optional**) Next we turn towards using the AEP for compression. Recall that in order to encode a set of size n in binary, it requires $\lceil \log_2 n \rceil$ bits. Therefore, a naïve encoding requires $\lceil \log_2 |\mathcal{X}| \rceil$ bits per symbol.

From (b) and (d), if we use $\log_2 |A_{\epsilon}^{(n)}| \approx nH(X_1)$ bits to encode the sequences in $A_{\epsilon}^{(n)}$, ignoring all other sequences, then the probability of error with this encoding will tend to 0 as $n \to \infty$, and thus an asymptotically error-free encoding can be achieved using $H(X_1)$ bits per symbol.

Alternatively, we can create an error-free code by using $1+\lceil \log_2 |A_{\epsilon}^{(n)}| \rceil$ bits to encode the sequences in $A_{\epsilon}^{(n)}$ and $1+n\lceil \log_2 |\mathcal{X}| \rceil$ bits to encode other sequences, where the first bit is used to indicate whether the sequence belongs in $A_{\epsilon}^{(n)}$ or not. Let L_n be the length of the encoding of X_1, \ldots, X_n using this code; show that $\lim_{n\to\infty} \mathbb{E}[L_n]/n \leq H(X_1) + \epsilon$. In other words, asymptotically, we can compress the sequence so that the number of bits per symbol is arbitrary close to the entropy.

6. [Bonus] Balls and Bins: Poisson Convergence

The bonus question is just for fun. You are not required to submit the bonus question, but do give it a try and write down your progress.

Consider throwing m balls into n bins uniformly at random. In this question, we will show that the number of empty bins converges to a Poisson limit, under the condition that $n \exp(-m/n) \to \lambda \in (0, \infty)$.

(a) Let $p_k(m, n)$ denote the probability that exactly k bins are empty after throwing m balls into n bins uniformly at random. Show that

$$p_0(m,n) = \sum_{j=0}^{n} (-1)^j \binom{n}{j} \left(1 - \frac{j}{n}\right)^m.$$

(*Hint*: Use the Inclusion-Exclusion Principle.)

(b) Show that

$$p_k(m,n) = \binom{n}{k} \left(1 - \frac{k}{n}\right)^m p_0(m,n-k). \tag{1}$$

(c) Show that

$$\binom{n}{k} \left(1 - \frac{k}{n}\right)^m \le \frac{\lambda^k}{k!} \tag{2}$$

as $m, n \to \infty$ (such that $n \exp(-m/n) \to \lambda$).

(d) Show that

$$\binom{n}{k} \left(1 - \frac{k}{n}\right)^m \ge \frac{\lambda^k}{k!} \tag{3}$$

as $m, n \to \infty$ (such that $n \exp(-m/n) \to \lambda$). This is the hard part of the proof. To help you out, we have outlined a plan of attack:

i. Show that

$$\binom{n}{k} \left(1 - \frac{k}{n}\right)^m \ge \left(1 - \frac{k}{n}\right)^{k+m} \frac{n^k}{k!}.$$

ii. Show that

$$\ln\left\{n^k\left(1-\frac{k}{n}\right)^m\right\} \to k\ln\lambda$$

as $m,n\to\infty$ (such that $n\exp(-m/n)\to\lambda$). You may use the inequality $\ln(1-x)\ge -x-x^2$ for $0\le x\le 1/2$.

iii. Show that

$$\left(1 - \frac{k}{n}\right)^k \to 1$$

as $m, n \to \infty$ (such that $n \exp(-m/n) \to \lambda$). Conclude that (3) holds.

(e) Now, show that

$$p_0(m,n) \to \exp(-\lambda)$$
.

(Try using the results you have already proven.) Conclude that

$$p_k(m,n) \to \frac{\lambda^k \exp(-\lambda)}{k!}.$$