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1. Midterm

Solve all of the problems on the midterm again (including the ones you got
correct).

2. Confidence Interval Comparisons

In order to estimate the probability of a head in a coin flip, p, you flip a coin n
times, where n is a positive integer, and count the number of heads, Sn. You
use the estimator p̂ = Sn/n.

(a) You choose the sample size n to have a guarantee

P(|p̂− p| ≥ ε) ≤ δ.

Using Chebyshev Inequality, determine n with the following parameters:

(i) Compare the value of n when ε = 0.05, δ = 0.1 to the value of n when
ε = 0.1, δ = 0.1.

(ii) Compare the value of n when ε = 0.1, δ = 0.05 to the value of n when
ε = 0.1, δ = 0.1.

(b) Now, we change the scenario slightly. You know that p ∈ (0.4, 0.6) and
would now like to determine the smallest n such that

P
( |p̂− p|

p
≤ 0.05

)
≥ 0.95.

Use the CLT to find the value of n that you should use.

3. Convergence in Probability

Let (Xn)∞n=1, be a sequence of i.i.d. random variables distributed uniformly in
[−1, 1]. Show that the following sequences (Yn)∞n=1 converge in probability to
some limit.

(a) Yn =
∏n
i=1Xi.

(b) Yn = max{X1, X2, . . . , Xn}.
(c) Yn = (X2

1 + · · ·+X2
n)/n.

4. Almost Sure Convergence

In this question, we will explore almost sure convergence and compare it to
convergence in probability. Recall that a sequence of random variables (Xn)n∈N
converges almost surely (abbreviated a.s.) to X if P(limn→∞Xn = X) = 1.
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(a) Suppose that, with probability 1, the sequence (Xn)n∈N oscillates between
two values a 6= b infinitely often. Is this enough to prove that (Xn)n∈N
does not converge almost surely? Justify your answer.

(b) Suppose that Y is uniform on [−1, 1], and Xn has distribution

P
(
Xn = (y + n−1)−1

∣∣ Y = y
)

= 1.

Does (Xn)∞n=1 converge a.s.?

(c) Define random variables (Xn)n∈N in the following way: first, set each Xn

to 0. Then, for each k ∈ N, pick j uniformly randomly in {2k, . . . , 2k+1−1}
and set Xj = 2k. Does the sequence (Xn)n∈N converge a.s.?

(d) Does the sequence (Xn)n∈N from the previous part converge in probability
to some X? If so, is it true that E[Xn]→ E[X] as n→∞?

5. Compression of a Random Source

Let (Xi)
∞
i=1

i.i.d.∼ p(·), where p is a discrete PMF on a finite set X . Additionally
define the entropy of a random variable X as H(X) = −

∑
x∈X p(x) log2 p(x).

That is, we define

H(X) = E
[
log2

1

p(X)

]
.

(We could also write this as H(p), since the entropy is really a property of the
distribution of X.) In this problem, we will show that a random source whose
symbols are drawn according to the distribution p can be compressed to H(X)
bits per symbol. In the lab, you will implement this coding and compare it to
Huffman coding.

(a) Show that

− 1

n
log2 p(X1, . . . , Xn)

n→∞−−−→ H(X1) almost surely.

(Here, we are extending the notation p(·) to denote the joint PMF of
(X1, . . . , Xn): p(x1, . . . , xn) := p(x1) · · · p(xn).)

(b) Fix ε > 0 and define A
(n)
ε as the set of all sequences (x1, . . . , xn) ∈ X n

such that:

2−n(H(X1)+ε) ≤ p(x1, . . . , xn) ≤ 2−n(H(X1)−ε).

Show that P((X1, . . . , Xn) ∈ A(n)
ε ) > 1− ε for all n sufficiently large. Con-

sequently, A
(n)
ε is called the typical set because the observed sequences

lie within A
(n)
ε with high probability.

(c) Show that (1 − ε)2n(H(X1)−ε) ≤ |A(n)
ε | ≤ 2n(H(X1)+ε), for n sufficiently

large.

Parts (b) and (c) are called the asymptotic equipartition property
(AEP) because they say that there are ≈ 2nH(X1) observed sequences
which each have probability ≈ 2−nH(X1). Thus, by discarding the se-

quences outside of A
(n)
ε , we need only keep track of 2nH(X1) sequences,

which means that a length-n sequence can be compressed into ≈ nH(X1)
bits, requiring H(X1) bits per symbol.
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(d) (optional) Now show that for any δ > 0 and any positive integer n, if
Bn ⊆ X n is a set with |Bn| ≤ 2n(H(X1)−δ), then P((X1, . . . , Xn) ∈ Bn)→ 0
as n→∞.

This says that we cannot compress the observed sequences of length n
into any set smaller than size 2nH(X1).

[Hint : Consider the intersection of Bn and A
(n)
ε .]

(e) (optional) Next we turn towards using the AEP for compression. Recall
that in order to encode a set of size n in binary, it requires dlog2 ne bits.
Therefore, a näıve encoding requires dlog2 |X |e bits per symbol.

From (b) and (d), if we use log2 |A
(n)
ε | ≈ nH(X1) bits to encode the

sequences in A
(n)
ε , ignoring all other sequences, then the probability of error

with this encoding will tend to 0 as n→∞, and thus an asymptotically
error-free encoding can be achieved using H(X1) bits per symbol.

Alternatively, we can create an error-free code by using 1+dlog2|A
(n)
ε |e bits

to encode the sequences in A
(n)
ε and 1 + ndlog2|X |e bits to encode other

sequences, where the first bit is used to indicate whether the sequence

belongs in A
(n)
ε or not. Let Ln be the length of the encoding of X1, . . . , Xn

using this code; show that limn→∞ E[Ln]/n ≤ H(X1) + ε. In other words,
asymptotically, we can compress the sequence so that the number of bits
per symbol is arbitrary close to the entropy.

6. [Bonus] Balls and Bins: Poisson Convergence

The bonus question is just for fun. You are not required to submit the bonus
question, but do give it a try and write down your progress.

Consider throwing m balls into n bins uniformly at random. In this question,
we will show that the number of empty bins converges to a Poisson limit, under
the condition that n exp(−m/n)→ λ ∈ (0,∞).

(a) Let pk(m,n) denote the probability that exactly k bins are empty after
throwing m balls into n bins uniformly at random. Show that

p0(m,n) =

n∑
j=0

(−1)j
(
n

j

)(
1− j

n

)m
.

(Hint : Use the Inclusion-Exclusion Principle.)

(b) Show that

pk(m,n) =

(
n

k

)(
1− k

n

)m
p0(m,n− k). (1)

(c) Show that (
n

k

)(
1− k

n

)m
≤ λk

k!
(2)

as m,n→∞ (such that n exp(−m/n)→ λ).
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(d) Show that (
n

k

)(
1− k

n

)m
≥ λk

k!
(3)

as m,n→∞ (such that n exp(−m/n)→ λ). This is the hard part of the
proof. To help you out, we have outlined a plan of attack:

i. Show that (
n

k

)(
1− k

n

)m
≥
(

1− k

n

)k+mnk
k!
.

ii. Show that

ln
{
nk
(

1− k

n

)m}
→ k lnλ

as m,n → ∞ (such that n exp(−m/n) → λ). You may use the
inequality ln(1− x) ≥ −x− x2 for 0 ≤ x ≤ 1/2.

iii. Show that (
1− k

n

)k
→ 1

as m,n → ∞ (such that n exp(−m/n) → λ). Conclude that (3)
holds.

(e) Now, show that

p0(m,n)→ exp(−λ).

(Try using the results you have already proven.) Conclude that

pk(m,n)→ λk exp(−λ)

k!
.
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