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1. Markov Chains with Countably Infinite State Space

(a) Consider a Markov chain with state space Z>0 and transition probability
graph:
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Show that this Markov chain has no stationary distribution.

(b) Consider a Markov chain with state space Z>0 and transition probability
graph:
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Assume that 0 < λ < µ and 0 < λ + µ ≤ 1. Show that the probability
distribution given by

π(i) =
(λ
µ

)i−1(
1− λ

µ

)
, for i ∈ Z>0,

is a stationary distribution of this Markov chain.

2. Choosing Two Good Movies

You have a database of a countably infinite number of movies. Each movie has
a rating that is uniformly distributed in {0, 1, 2, 3, 4, 5} and you want to find
two movies such that the sum of their rating is greater than 7.5. Assume that
you choose movies from the database one by one and keep the movie with the
highest rating so far. You stop when you find that the sum of the ratings of
the last movie you have chosen and the movie with the highest rating among
all the previous movies is greater than 7.5.
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(a) Define an appropriate Markov chain and use the first step equations in
order to find the expected number of movies you will have to choose.

(b) Now assume that the ratings of the movies are uniformly distributed in
the interval [0, 5]. Write the first step equations for the expected number
of movies you will have to choose in this case.

3. Expected return times and stationarity

For this question, we have an irreducible, finite-state Markov chain X0, X1, · · · ,
so it has a stationary distribution π(x). In this question, we are going to show
a remarkable property of expected self hitting times; namely, the stationary
distribution is the reciprocal of the expected self-hitting time. To show this,
we will first show that for any fixed state x, the stationary distribution is
proportional to number of times you hit a particular state y before you come
back to your original state.

(a) Count the number of times we hit y before coming back to x. Let
π∗x(y) = E[

∑Tx−1
i=0 1Xi=y | X0 = x] where Tx is the first time we hit x

again. Show that πxP = πx (Hint: Do it differently for πx(y) for y = x
and y 6= x)

(b) Argue that π(x) = 1
Ex[Tx]

(Hint: Think of the normalizing constant for

the vector πx.)

4. Poisson Branching

Consider a branching process such that at generation n, each individual in
the population survives until generation n + 1 with probability 0 < p < 1,
independently, and a Poisson number (with parameter λ) of immigrants enters
the population. Let Xn denote the number of people in the population at
generation n.

(a) Suppose that at generation 0, the number of people in the population is a
Poisson random variable with parameter λ0. What is the distribution at
generation 1? What is the distribution at generation n?

(b) What is the distribution of Xn as n→∞? What if at generation 0, the
number of individuals is an arbitrary probability distribution over the
non-negative integers; does the distribution still converge? (Justify the
convergence rigorously.)

5. Customers in a Store

Consider two independent Poisson processes with rates λ1 and λ2. Those
processes measure the number of customers arriving in store 1 and 2.

(a) What is the probability that a customer arrives in store 1 before any
arrives in store 2?

(b) What is the probability that in the first hour exactly 6 customers arrive,
in total, at the two stores?

(c) Given that exactly 6 have arrived, in total, at the two stores, what is the
probability that exactly 4 went to store 1?
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6. Arrival Times of a Poisson Process

Consider a Poisson process (Nt, t ≥ 0) with rate λ = 1. For i ∈ Z>0, let Si be
a random variable which is equal to the time of the i-th arrival.

(a) Find E[S3 | N1 = 2].

(b) Given S3 = s, where s > 0, find the joint distribution of S1 and S2.

(c) Find E[S2 | S3 = s].

7. [Bonus] Choosing Two Good Movies (cont.)

The bonus question is just for fun. You are not required to submit the bonus
question, but do give it a try and write down your progress.

Solve the first step equations that you derived in Part (b), in order to find the
expected number of movies that you will have to choose.
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