1. Timer Circuits

In this problem, we will walk through the timer circuit, shown below, similar to the one seen in lecture. The circuit is shown below. All resistors have value $1k\Omega$ and $C_1 = 1\mu F$.

- (a) Find the current through the capacitor C_1 in terms of the voltage V_3 and the resistor R_1 .
- (b) Suppose at time t = 0, C_1 is uncharged. Find the voltage v_1 in terms of t, v_3 , and R_1 . What is the maximum $|v_1|$ could be?
- (c) How is v_2 related to v_1 ? What is the voltage v_2 ?

Opamp O_3 is not connected in negative feedback. We can however analyze it's behavior by considering it to be a comparator. Let's independently analyze the circuit in the two possible outputs of the comparator.

- (d) Assume the output of the comparator V_3 has railed to the top rail. With this value of v_3 , what is v_2 as a function of time? What is the voltage at the positive input of opamp O_3 ? At what time will the two inputs of the comparator be equal?
- (e) Now assume the reverse occurs, the input of the comparator has railed to the top rail. Repeat part d) with this value of v_3 .
- (f) What is the v_3 as a function of time? Draw a graph of v_3 and v_2 . This circuit is periodic, find it's period and frequency.
- (g) Suppose we changed the value of C_1 to be 2μ F? What is the new period? Suppose we change R_5 to be $2k\Omega$. What is the new period? What if we change R_5 to be 0Ω ? Will this circuit still operate?