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1. Linear Least Squares with Orthogonal Columns

(a) Geometric Interpretation of Linear Least Squares
Consider a linear least squares problem of the form

min
~x
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Let the solution be ~̂x.
Label the following elements in the diagram below.

~b, A1, A2, span{A1,A2}, ~̂e =~b−A~̂x, A~̂x, A1x̂1, A2x̂2, (2)

(b) We now consider the special case of linear least squares where the columns of A are orthogonal (illus-
trated in the figure below). Use the linear least squares formula ~̂x = (AT A)−1AT~b to show that

x̂1 = factor by which A1 is scaled to produce the projection of~b onto A1 (3)

x̂2 = factor by which A2 is scaled to produce the projection of~b onto A2 (4)
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(c) Compute the linear least squares solution to

min
~x
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(d) Decomposing Linear Least Squares
Solve each of the following linear least squares problems
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Now solve the larger linear least squares problem

min
~x
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What do you notice when you compare the solutions?

EECS 16A, Spring 2017, Discussion 12B 2



2. Polynomial Fitting

Least squares may seem rather boring at first glance – we’re just using it to “solve" systems of linear equa-
tions, after all. But, at further glance, it actually comes in a variety of sizes and flavors! For instance, you
can solve problems that have decidedly non-linear elements in them, using least squares. Let’s see how.

Last discussion, we had seen how to “fit" data in the form of (input = x,out put = y) to a line. This made
sense because the input-output relationship was fundamentally linear (Ohm’s law).

But what if this relationship was not linear? For instance, the equation of the orbit of a planet around the
sun is an ellipse. The equation for the trajectory of a projectile is a parabola. In these sorts of scenarios, how
does one fit observation data to the correct curve?

In particular, say we know that the output, y, is a quartic polynomial in x. This means that we know that y
and x are related as follows:

y = a0 +a1x+a2x2 +a3x3 +a4x4 (8)

We’re also given the following observations:

x y
0.0 24.0
0.5 6.61
1.0 0.0
1.5 -0.95
2.0 0.07
2.5 0.73
3.0 -0.12
3.5 -0.83
4.0 -0.04
4.5 6.42

(a) What are the unknowns in this question? What are we trying to solve for?

(b) Can you write an equation corresponding to the first observation (x0,y0), in terms of a0, a1, a2, a3 and
a4? What does this equation look like? Is it linear?

(c) Now, write a system of equations in terms of a0, a1, a2, a3 and a4 using all the observations.

(d) Finally, solve for a0, a1, a2, a3, and a4 using IPython. You have now found the quartic polynomial that
best fits the data!

(e) We will now do another example in the IPython notebook, and see how to do polynomial fitting quickly
using IPython!
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