EECS 16A Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Discussion 2B

1. Polynomials as a Vector Space

Let \mathbb{P}_{2} be the set of polynomials of degree at most two (that is, $a t^{2}+b t+c$).
(a) Give a basis for \mathbb{P}_{2}.
(b) Consider the linear transformations

$$
\begin{aligned}
& T_{1}(f(t))=2 f(t) \\
& T_{2}(f(t))=f^{\prime}(t)
\end{aligned}
$$

For each, find the transformation matrix with respect to the basis from part (a).
(c) Suppose that $\left\{x_{0}, x_{1}, x_{2}\right\}$ form a basis for \mathbb{P}_{2}, and that the following polynomials have the corresponding coordinates in this basis.

$$
\begin{gathered}
(1,1,1) \rightarrow 2 t^{2}+3 t \\
(1,0,-1) \rightarrow t+1 \\
(0,2,0) \rightarrow 4 t+2
\end{gathered}
$$

Find the basis vectors x_{0}, x_{1}, x_{2}.

2. Mechanical Projection

Reference Definitions

Inner Product Algebraic definition: $\vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{N}\end{array}\right] \in \mathbb{R}^{N}, \vec{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{N}\end{array}\right] \in \mathbb{R}^{N}:\langle\vec{x}, \vec{y}\rangle=\sum_{i=1}^{N} x_{i} \cdot y_{i}$.
Euclidean Norm The Euclidean Norm of a vector $\vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{N}\end{array}\right] \in \mathbb{R}^{N}$ is $\|\vec{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2}}$
Vector Scaling Let $c \in \mathbb{R}$ and $\vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{N}\end{array}\right] \in \mathbb{R}^{N}$. Recall that $c \cdot \vec{x}=\left[\begin{array}{c}c \cdot x_{1} \\ c \cdot x_{2} \\ \vdots \\ c \cdot x_{N}\end{array}\right]$.
In \mathbb{R}^{n}, the projection of vector \vec{b} onto vector \vec{a} is:

$$
\operatorname{proj}_{\vec{a}} \vec{b}=\frac{\langle\vec{b}, \vec{a}\rangle}{\|\vec{a}\|^{2}} \vec{a}=\frac{\langle\vec{b}, \vec{a}\rangle}{\|\vec{a}\|} \frac{\vec{a}}{\|\vec{a}\|}
$$

where \hat{a} is the normalized \vec{a}, i.e. a unit vector with the same direction as \vec{a}.
(a) Project $\left[\begin{array}{l}5 \\ 2\end{array}\right]$ onto $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ - that is, onto the x -axis. Graph these two vectors and the projection.
(b) Project $\left[\begin{array}{l}5 \\ 2\end{array}\right]$ onto $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ - that is, onto the y-axis. Graph these two vectors and the projection.
(c) Project $\left[\begin{array}{c}4 \\ -2\end{array}\right]$ onto $\left[\begin{array}{c}2 \\ -1\end{array}\right]$. Graph these two vectors and the projection.
(d) Project $\left[\begin{array}{c}4 \\ -2\end{array}\right]$ onto $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Graph these two vectors and the projection.

