EECS 16A Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Discussion 2B

1. Polynomials as a Vector Space

Let \mathbb{P}_2 be the set of polynomials of degree at most two (that is, $at^2 + bt + c$).

- (a) Give a basis for \mathbb{P}_2 .
- (b) Consider the linear transformations

$$T_1(f(t)) = 2f(t)$$
$$T_2(f(t)) = f'(t)$$

For each, find the transformation matrix with respect to the basis from part (a).

(c) Suppose that $\{x_0, x_1, x_2\}$ form a basis for \mathbb{P}_2 , and that the following polynomials have the corresponding coordinates in this basis.

$$(1, 1, 1) \rightarrow 2t^2 + 3t$$

 $(1, 0, -1) \rightarrow t + 1$
 $(0, 2, 0) \rightarrow 4t + 2$

Find the basis vectors x_0, x_1, x_2 .

2. Mechanical Projection

Reference Definitions

Inner Product Algebraic definition:
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N, \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \in \mathbb{R}^N : \langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^N x_i \cdot y_i.$$

Euclidean Norm The Euclidean Norm of a vector $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N$ is $||\vec{x}|| = \sqrt{x_1^2 + x_2^2 + \dots + x_N^2}$
Vector Scaling Let $c \in \mathbb{R}$ and $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N$. Recall that $c \cdot \vec{x} = \begin{bmatrix} c \cdot x_1 \\ c \cdot x_2 \\ \vdots \\ c \cdot x_N \end{bmatrix}$.

In \mathbb{R}^n , the projection of vector \vec{b} onto vector \vec{a} is:

$$proj_{\vec{a}}\vec{b} = \frac{\langle \vec{b}, \vec{a} \rangle}{||\vec{a}||^2}\vec{a} = \frac{\langle \vec{b}, \vec{a} \rangle}{||\vec{a}||} \frac{\vec{a}}{||\vec{a}||}$$

where \hat{a} is the normalized \vec{a} , i.e. a unit vector with the same direction as \vec{a} .

(a) Project $\begin{bmatrix} 5\\2 \end{bmatrix}$ onto $\begin{bmatrix} 1\\0 \end{bmatrix}$ - that is, onto the x-axis. Graph these two vectors and the projection. (b) Project $\begin{bmatrix} 5\\2 \end{bmatrix}$ onto $\begin{bmatrix} 0\\1 \end{bmatrix}$ - that is, onto the y-axis. Graph these two vectors and the projection. (c) Project $\begin{bmatrix} 4\\-2 \end{bmatrix}$ onto $\begin{bmatrix} 2\\-1 \end{bmatrix}$. Graph these two vectors and the projection. (d) Project $\begin{bmatrix} 4\\-2 \end{bmatrix}$ onto $\begin{bmatrix} 1\\1 \end{bmatrix}$. Graph these two vectors and the projection.