EECS 16A Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Discussion 3B

1. Unit Spheres

The unit sphere of a given norm $\|\cdot\|$ is the set of vectors *x* for which $\|x\|=1$. For the following norms (in \mathbb{R}^2), plot their unit sphere:

- (a) $\|\cdot\|_1$
- (b) $\|\cdot\|_2$
- (c) $\|\cdot\|_{\infty}$

2. Matrix Inner Products

First, a definition: the trace of a square matrix **A**, denoted tr(**A**), is the sum of its diagonal entries. An inner product for matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ is:

$$\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{tr}(\mathbf{A}^T \mathbf{B})$$

(a) Let a_i be the i^{th} column of **A** and b_i be the columns of **B**. Show that:

$$\operatorname{tr}(\mathbf{A}^T\mathbf{B}) = \sum_{i=1}^n \langle a_i, b_i \rangle$$

- (b) Confirm that $\langle \mathbf{A}, \mathbf{B} \rangle$ is in fact an inner product by showing the following:
 - i. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$

ii.
$$\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$$

iii.
$$\langle u, v \rangle = \langle v, u \rangle$$

iv. $\langle u, u \rangle \ge 0$ with equality if and only if u = 0.

3. Row Space

Consider:

$$\mathbf{V} = \begin{bmatrix} 2 & 4 & 6\\ 4 & 0 & 4\\ 6 & 4 & 10\\ -2 & 4 & 2 \end{bmatrix} \tag{1}$$

Row reducing this matrix yields:

$$\mathbf{U} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(2)

- (a) Show that the row space of U and V are the same. Argue that in general, Gaussian elimination preserves the row space.
- (b) Show that the null space of U and V are the same. Argue generally that Gaussian elimination preserves the null space.