EECS 16A Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Discussion 3B

1. Unit Spheres

The unit sphere of a given norm $\|\cdot\|$ is the set of vectors x for which $\|x\|=1$. For the following norms (in \mathbb{R}^{2}), plot their unit sphere:
(a) $\|\cdot\|_{1}$
(b) $\|\cdot\|_{2}$
(c) $\|\cdot\|_{\infty}$

2. Matrix Inner Products

First, a definition: the trace of a square matrix \mathbf{A}, denoted $\operatorname{tr}(\mathbf{A})$, is the sum of its diagonal entries.
An inner product for matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ is:

$$
\langle\mathbf{A}, \mathbf{B}\rangle=\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{B}\right)
$$

(a) Let a_{i} be the $i^{\text {th }}$ column of \mathbf{A} and b_{i} be the columns of \mathbf{B}. Show that:

$$
\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{B}\right)=\sum_{i=1}^{n}\left\langle a_{i}, b_{i}\right\rangle
$$

(b) Confirm that $\langle\mathbf{A}, \mathbf{B}\rangle$ is in fact an inner product by showing the following:
i. $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$
ii. $\langle\alpha u, v\rangle=\alpha\langle u, v\rangle$
iii. $\langle u, v\rangle=\langle v, u\rangle$
iv. $\langle u, u\rangle \geq 0$ with equality if and only if $u=0$.

3. Row Space

Consider:

$$
\mathbf{V}=\left[\begin{array}{ccc}
2 & 4 & 6 \tag{1}\\
4 & 0 & 4 \\
6 & 4 & 10 \\
-2 & 4 & 2
\end{array}\right]
$$

Row reducing this matrix yields:

$$
\mathbf{U}=\left[\begin{array}{lll}
1 & 0 & 1 \tag{2}\\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(a) Show that the row space of U and V are the same. Argue that in general, Gaussian elimination preserves the row space.
(b) Show that the null space of U and V are the same. Argue generally that Gaussian elimination preserves the null space.

