
EECS 16A Designing Information Devices and Systems I
Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework 3

This homework is due February 13, 2017, at 23:59.
Self-grades are due February 16, 2017, at 23:59.
Submission Format
Your homework submission should consist of two files.

• hw3.pdf: A single pdf file that contains all your answers (any handwritten answers should be
scanned) as well as your IPython notebook saved as a pdf. You can do this by printing the IPython
notebook page in your browser and selecting the save to pdf option. Make sure any plots and results
are showing. Also make sure you combine any separate pdfs into one file.

• hw3.ipynb: A single IPython notebook with all your code in it.

Submit each file to its respective assignment in Gradescope.

1. Fountain Codes
Consider a sender, Alice, and a receiver, Bob. Alice wants to send a message to Bob, but the message is
too big to send all at once. Instead, she breaks her message up into little chunks which she sends across a
wireless channel one at a time (think radio transmitter to antenna). She knows some of the packets will be
corrupted or erased along the way (someone might turn a microwave on...), so she needs a way to protect
her message from errors. This way, even if Bob gets a message missing parts of words he can still figure
out what Alice is trying to say! One coding strategy is to use Fountain Codes. Fountain codes are a type
of error-correcting codes based on principles of Linear Algebra. They were actually developed right here
at Berkeley! The company that commercialized them, Digital Fountain, (started by a Berkeley grad, Mike
Luby), was later acquired by Qualcomm. In this problem, we will explore some of the underlying principles
that make Fountain codes work in a very simplified setting.

In this problem, we concentrate on the case with transmission erasures, i.e. where a bad transmission causes
some parts the message to be erased. Let us say Alice wants to convey the set of her three favorite ideas
covered in 16A lecture each day to Bob. For this, she maps each idea to a real number and wants to convey
the 3-tuple

[
a b c

]T (Let us say there are an infinite number of ideas covered in 16A). At each time step,
she can send one number, which we will call a “symbol” across. So one possible way for her to send the
message is to first send a, then send b, and then send c. However, this method is particularly susceptible to
losses. For instance, if the first symbol is lost, then Bob will receive

[
? b c

]T , and he will have no way
of knowing what Alice’s favorite idea is.
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(a) The main idea in coding for erasures is to send redundant information so that we can recover from
losses. So if we have three symbols of information, we might transmit six symbols for redundancy. One
of the most naive codes is called the repetition code. Here, Alice would transmit

[
a b c a b c

]T .
How much erasure can this transmission recover from? Are there specific patterns it cannot handle?

(b) A better strategy for transmission is to send linear combinations of symbols. Alice and Bob decide in
advance on a collection of vectors ~vi =

[
αi βi γi

]
, 1≤ i≤ 6. These vectors define the code: at time

i, Alice transmits the scalar

ki =~vi

a
b
c

= αia+βib+ γic.

Formulate the setup / the six transmitted symbols using matrix/vector notation.

(c) What are the vectors ~vi =
[
αi βi γi

]
, 1≤ i≤ 6 that generate the repetition code strategy in part (a)?

(d) Suppose now we choose a collection of seven vectors

~v1 =
[
1 0 0

]
, ~v2 =

[
0 1 0

]
, ~v3 =

[
0 0 1

]
, ~v4 =

[
1 1 0

]
,

~v5 =
[
1 0 1

]
, ~v6 =

[
0 1 1

]
, ~v7 =

[
1 1 1

]
Again, at time i, Alice transmits the scalar ki = ~vi

[
a b c

]T . Under what conditions, (i.e. what
patterns of losses) can Bob still recover the message?

(e) Suppose, using the collection of vectors in part (d), Bob receives
[
6 ? ? 2 3 ? ?

]T . What was
the transmitted message? Express the problem as a system of linear equations using matrix/vector
notation.

(f) Fountain codes build on these principles. The basic idea used by these codes is that Alice keeps
sending linear combinations of symbols until Bob has received enough to decode the message. So at
time 1, Alice sends the linear combination using ~v1, at time 2 she sends the linear combination using
~v2 and so on. After each new linear combination is sent, Bob will send back an acknowledgement if
he can decode her message (i.e. figure out the original

[
a b c

]T that she intended to communicate).
So clearly, the minimum number of transmissions for Alice is 3. If Bob receives the first three linear
combinations that are sent, Alice is done in three steps! But because of erasures, she might hear
nothing (he hasn’t decoded yet). Suppose Alice used

~v1 =
[
1 0 0

]
, ~v2 =

[
0 1 0

]
, ~v3 =

[
0 0 1

]
as her first three vectors, but she has still not received an acknowledgement from Bob. Should she
choose new vectors according to the strategy in part (a) or the strategy in part (d)? Why?

2. Cubic Polynomials
Consider the set of real-valued canonical polynomials given below:

ϕ0(t) = 1 ϕ1(t) = t ϕ2(t) = t2
ϕ3(t) = t3,

where t ∈ [a,b]⊂ R.

(a) Show that the set of all cubic polynomials

p(t) = p0 + p1t + p2t2 + p3t3,

where t ∈ [a,b] and the coefficients pk are real scalars, forms a vector space. What is the dimension of
this vector space? Explain.
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(b) Show that every real-valued cubic polynomial

p(t) = p0 + p1t + p2t2 + p3t3

defined over the interval [a,b] can be written as a linear combination of the canonical polynomials
ϕ0(t), ϕ1(t), ϕ2(t), and ϕ3(t). In particular, show that

p(t) =~cT~ϕ(t),

where
~cT = [c0 c1 c2 c3]

is a vector of appropriately chosen coefficients, and

ϕ(t) =


ϕ0(t)
ϕ1(t)
ϕ2(t)
ϕ3(t)

=


1
t
t2

t3

 .
(c) Determine the coefficients ck for k = 0,1,2,3. That is to say, for the setup above, determine what

values would be in the c vector.

(d) True or False? The canonical polynomials ϕk(t) = tk, for k = 0,1,2,3, constitute a basis for the vector
space of real-valued cubic polynomials defined over the interval [a,b]. Briefly justify your answer

(e) A curve is a continuous mapping from the real line to RN . A cubic Bézier curve—used extensively
in computer graphics—is a type of curve that uses as a basis the following special subset of what are
more broadly known as Bernstein polynomials:

β0(t) = (1− t)3, β1(t) = 3 t (1− t)2, β2(t) = 3 t2 (1− t), and β3(t) = t3.

Prove that the Bernstein polynomials βk(t) defined above do indeed form a basis. To do this, show that
any real-valued polynomial

p(t) = p0 + p1t + p2t2 + p3t3

can be expressed as a linear combination of the polynomials βk(t), and determine the coefficients in
that linear combination. In particular, determine the coefficients in the expansion

p(t) = p̂0 β0(t)+ p̂1β1(t)+ p̂2β2(t)+ p̂3β3(t)

.
Hint: Determine a matrix R such that

~β (t) = R~ϕ(t),

where

~β (t) =


β0(t)
β1(t)
β2(t)
β3(t)

=


(1− t)3

3 t (1− t)2

3 t2 (1− t)
t3

 .
Without solving for the inverse, show that R is invertible. Determine its inverse R−1, from which you
can determine the coefficients p̂k. You may use IPython to find R−1.

3. Pumps Properties Proofs
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(a) Suppose we have a pump setup as in Figure , with associated matrix A. Write out the state transition
matrix A.  A

x[n]

=

x[n+1]


(b) Suppose the reservoirs are initialized to have the following water levels: x1[0] = 0.5, x2[0] = 0.5. In

a completely alternate universe the pools are initialized to have the following water levels: x1[0] =
0.3, x2[0] = 0.7. For both initial states, what are the water levels at timestep 1 (x1[1], x2[1])?

(c) If you observe the pools at timestep 1, can you figure out what the initial (x1[0], x2[0]) water levels
were? Why or why not?

(d) Now generalize: if there exists a state transition matrix where two different initial state vectors lead to
the same water levels/state vectors at a timestep in the future, can you recover the initial water levels?
Prove your answer. (Hint: What does this say about the matrix A?)

(e) Suppose there is a pump state transition matrix (and corresponding experiment matrix, similar to the
last subpart) where every initial state is guaranteed to have a unique state vector in the next timestep.
Consider what this statement implies about the system of linear equations represented by the state
transition matrix A. Can you recover the initial state? Prove your answer, and explain what this implies
about the experiment.

4. Bieber’s Segway
After one too many infractions with the law J-Biebs decides to find a new mode of transportation, and you
suggest he get a segway.

He becomes intrigued by your idea and asks you how it works.

You let him know that a force (through the spinning wheel) is applied to the base of the segway, and this in
turn controls both the position of the segway and angle of the stand. As you push on the stand the segway
tries to bring itself back to the upright position, and it can only do this by moving the base.

J-Biebs is impressed, to say the least, but he is a little concerned that only one input (force) is used to control
two outputs (position and angle). He finally asks if it’s possible for the segway to be brought upright and to
a stop from any initial configuration. J-Biebs calls up a friend who’s majoring in mechanical engineering,
who tells him that a segway can be modeled as a cart-pole system:

pole	



cart	



p	



F	
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A cart-pole system can be fully described by its position p, velocity ṗ, angle θ , and angular velocity θ̇ . We
write this as a “state vector":

~x =


p
ṗ
θ

θ̇

 (1)

The input to this system u will just be the force applied to the cart (or base of the segway).1

At time step n, we can apply scalar input u[n]. The cart-pole system can be represented by a linear model:

~x[n+1] = A~x[n]+~bu[n], (2)

where A ∈ R4×4 and~b ∈ R4×1. The model tells us how the the state vector will evolve over (discrete) time
as a function of the current state vector and control inputs.

To answer J-Biebs’ question, you look at this general linear system, and try to answer the following question:
Starting from some initial state ~x0, can we reach a final desired state, ~x f in N steps?

The challenge seems to be that the state is 4-dimensional and keeps evolving and we can only apply a
one dimensional control at each time. Is it possible to control something 4-dimensional with only one
degree of freedom that we can command?

You solve this problem by walking through several steps.

(a) Express~x[1] in terms of~x[0] and the input u[0].

(b) Express~x[2] in terms of only~x[0] and the inputs, u[0] and u[1].

(c) Express~x[3] in terms of only~x[0] and inputs u[0], u[1] and u[2].

(d) Express~x[4] in terms of only~x[0] and inputs u[0], u[1], u[2] and u[3].

(e) Now, derive an expression for~x[N] in terms of~x[0] and the inputs from u[0]...u[N−1]. (Hint: You can
use a sum from 0 to N−1.)
For the next four parts of the problem, you are given the matrix A and the vector b:

A =


1 0.05 −0.01 0
0 0.22 −0.17 −0.01
0 0.10 1.14 0.10
0 1.66 2.85 1.14

 (3)

~b =


0.01
0.21
−0.03
−0.44

 (4)

1Some of you might be wondering why it is that applying a force in this model immediately causes a change in position. You
might have been taught in high school physics that force creates acceleration, which changes velocity (both simple and angular),
which in turn causes changes to position and angle. Indeed, when viewed in continuous time this is true instantaneously. However
here in this engineering system, we have discretized time, i.e. we think about applying this force constantly for a given finite
duration and we see how the system responds after that finite duration. In this finite time, indeed the application of a force will
cause changes to all four components of the state. But notice that the biggest influence is indeed on the two velocities, as should
comport with your intuition from high school physics.
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The state vector ~0 corresponds to the cart-pole (or segway) being upright and stopped at the origin.

Assume the cart-pole starts in an initial state~x[0] =


−0.3853493
6.1032227
0.8120005
−14

, and you want to reach the desired

state ~x f =~0 using the control inputs u[0],u[1], .... (Reaching ~x f =~0 in N steps means that, given we
start at~x[0], the state vector in the Nth time step, we can find control inputs such that we get~x[N] equal
to ~x f .)
Note: You can use IPython to solve the next four parts of the problem. We have provided a function
gauss_elim(matrix) to help you find the row reduced echelon form of matrices.

(f) Can you reach ~x f in two time steps? (Hint: Express~x[2]−A2~x[0] in terms of the inputs u[0] and u[1].)

(g) Can you reach ~x f in three time steps?

(h) Can you reach ~x f in four time steps?

(i) If the answer to the previous part is yes, find the required correct control inputs using IPython, and
verify the answer by entering these control inputs into the code in the IPython notebook. The code has
been written to simulate this system, and you should see the system come to a halt in four time steps!
Suggestion: See what happens if you enter all four control inputs equal to 0. This gives you an
idea of how the system naturally evolves!

(j) Let’s return to a general matrix A and a general vector b. What condition do we need on

span{~b,A~b,A2~b, . . . ,AN−1~b}

for ~x f =~0 to be “reachable" from ~x0 in N steps?

(k) What condition would we need on span{~b,A~b,A2~b, . . . ,AN−1~b} for any valid state vector to be reach-
able from ~x0 in N steps?
Wouldn’t this be cool?

5. Homework process and study group

Who else did you work with on this homework? List names and student ID’s. (In case of hw party, you can
also just describe the group.) How did you work on this homework?
Working in groups of 3-5 will earn credit for your participation grade.

6. (PRACTICE) Mechanical Inverses

For each of the following matrices, state whether the inverse exists. If so, find the inverse. If not, prove that
no inverse exists. Solve these by hand! Do NOT use NumPy!

(a)
[

1 1
2 0

]
(b)
[

3 2
1 −1

]
(c)

[
−1

2 −
√

3
2√

3
2 −1

2

]

(d)

1 0 0
0 −1 1
0 1 0

 (e)

1 0 0
0 −1 1
0 1 −1


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