Electrical Engineering and Computer Sciences

EECS 16A

Head TAs

• Email: <u>head-ta-ee16a@berkeley.edu</u>

Email Harrison with:

- Questions not for piazza
- Conflicts
- Emergencies

Introduce TAs

• Many are returning 16A staff members

Introduce Faculty

• Babak Ayazifar

<u>ayazifar@eecs.berkeley.edu</u> 517 Cory

- No surprise visits, please!
 - For one-on-one matters,
 - make appointment by e-mail;
 - provide your availability; and
 - we'll pick a mutually-convenient slot to meet.

Introduce Faculty

- Vladimir Stojanović <u>vlada@eecs.berkeley.edu</u> 513 Cory
- Story...
- Other contributors to 16 (besides Babak/Vladimir):
 - Elad Alon, Anant Sahai, Ali Niknejad, Claire Tomlin, Gireeja Ranade, Michel Maharbiz, Laura Waller, Miki Lustig, Vivek Subramanian, Thomas Courtade

And we have even more!

An army of Academic Interns...
– Former 16A students just like you ...

- The path to being on 16A staff
 - Do great in 16A
 - Become a lab assistant, reader/tutor

Important Web Sites

• EECS 16A

http://inst.eecs.berkeley.edu/~ee16a/sp17/

• Piazza

http://piazza.com/

Content Introduction

 All of these extract information from the real world and interact with it; we will be learning how to design and understand these devices & systems!

16A: Information Devices and Systems

Imaging/Tomography and Google PageRank (~5 wks)

- Topics: Linear algebraic thinking and graphs
- Lab: Single-pixel imager
- Touchscreens (5 wks)
 - Topics: Linear circuits and design
 - Lab: Home-made R and C touchscreens
- Locationing and Least-Squares (4 wks)
 - Topics: Linear-algebraic optimization
 - Lab: Acoustic localization "GPS"

Some detailed topics for 16A

- Vectors and vector spaces
- Inner products, projection, orthogonality
- Matrices and linear transformations
- Rank and solving systems of linear equations
- Graphs, flows, and matrices
- How to do design and synthesis
- KCL, KVL, Ohm's Law

- Equivalence, modeling, and abstraction
- Capacitance and charge
- Gain and feedback
- Correlation and interference
- Linear regression and optimization
- Determinants, eigenvalues and eigenvectors
- Diagonalization

EECS Upper Divs: What 16AB feed

16AB	Modeling and Algorithms	170, 126, 188,	189, 120, 121, 123, 174, 144,	Specific Domains	
20 70				121, 122, 168 Comm+Net	176, 145B CompBio, Imaging
61B		12/	172	191 Quantum	128, <mark>106</mark> , 192 Control + Robotics
61A	General Software	162, 161,	160 <i>, 168,</i> 149	184 Graphics	186 Databases
61C	Soltware	169		164 Compilers	152 Computers
		105, 140,	130, 143, 145L	145MO Bio	147 MEMS
40	General Hardware 140, 151			117 Antennas	142 Comm ICs
16AB		151		118 Optics	113, 137AB, 134 Power+SolarEnergy

How Did We Get From This...

Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Gordon Moore Intel Cofounder

B.S. Cal 1950!

Date of introduction

Source: Mark Bohr, IDF14

That's Just One Piece of the Puzzle...

1940's

Where This is Used:

Advanced Metering

Market Support

Whom We're Training You to Be

An example system: iPad Air 2

- Runs apps, but:
 - How is it charged / discharged?
 - What makes the display tick?
 - How does the Wi-Fi work?
 - How does it sense touch on the touch screen?
 - How does it sense motion?
 - How do the "brains" operate?

... and how can I learn stuff, so I can work on such cool technology?

Inside an iPad Air 2

The Camera

Goal: Convert light into electrical signals

Get color spatial distribution by using an array of "light" detectors, each under a color filter

Cameras: "Mathematical" Guts

Medical Imaging ca. 1895

Need to find a way to see inside without "light"

Medical Imaging Today

All of these were enabled/dramatically advanced by the mathematical and hardware design techniques you will learn in this class!

Imaging In General

Imaging System

(electronics, control, computing, algorithms, visualization, ...)

Simplest Imaging System

 What is the absolute smallest number of components you need to make an imaging system?

Simple Imager Example

Simple Imager Example

Imaging Lab #1

Your Setup

An Imager with Just One Sensor?

- After all, today's cameras have millions of pixels...
- Great teaching vehicle: you can actually get a lot out of surprisingly simple designs
 - Once you know the right techniques!
- In some systems the sources and/or detectors might actually be expensive
 - Take this opportunity to learn a little more about how detectors usually work
 - And how we get them to "talk" to our electronic systems

More Complex Imaging Scenario

- What if we can't shine light (i.e., focus energy) either uniformly on all spots or in just one spot?
- The signal we receive on our detector will be a **linear combination** of several features of the image from different points.
- Can we recover the original image?
 - In many cases, yes!
 - Will start to see how next...