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Abstract

e A system that estimates the motion of a

stereo head or a single camera based on video
Input

* Real-time navigation for ground vehicles



Related Work

A Visual Odometry System — Olson 2003
Previous Work of this Paper — Nister 2004
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« With absolute orientation sensor % [

« Forstner interest operator in the left |
Image, matches from left to right

» Use approximate prior knowledge

& Iteratively select landmark points




Related Work

A Visual Odometry System — Olson 2003
Previous Work of this Paper — Nister 2004

~

Estimates ego-motion using a hand-held Camera
» Real-time algorithm based on RANSAC




Motivation

i Nister:

' With absolute orientation sensor | Use pure visual information |

 Iteratively select landmark points | RANSAC based estimation in

Use approximate prior knowledge | No prior knowledge
real-time



Feature Detection

Harris Corner Detection

Search for the local maxima of the corner strength ¢(x, y)
d determinant, ¢ trance, fconstant, g, bwindow area,
I.,1, derivatives of input image, ,,,weight function.

max s(x,y) = d(G,(x,y) - kH(G,(x,y))’
Golx,y) =22, > w(a,b)
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Feature Detection

* Non-max Suppression
A feature point is declared at each pixel
where the response is stronger than all other
nixels in a 5*5 neighborhood.
* Local Saturation

Limit the number of features in a local region
of the image to bound processing time.



Feature Detection

Detected Feature Points

Superimposed feature tracks through images




Feature Matching

* Disparity Limit
1) A feature in one image is matched to every

feature within a fixed distance from it in the
next image.

2) DL chosen based on speed requirements
and smoothness of the input



Feature Matching

Two Directional Matching (Mutual Consistency Check)

. Calculate the normalized correlation in 7 x n boxes
centered around each detected feature, where |, ]1, Izare two
input image patches.

nzll 2121
JEF N1 yn >3 = (Y1)

. Match the feature points in the circular area that have the
maximum correlation in two directions.

nxn




Pose Estimation Problem

Input:

Frame(t,,t,,t,,...)

/
OUtpUt: — /

Rotation
Translation



Epipolar Geometry

epipolar plane \

e

epipolar - l1 |
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(R,1)
. . . T _
Epipolar constraint equation: U q ECE‘() = ()

X; is a vector in projective space representing a 2D point in camera i

Rotation and translation information (R,f) can be extracted from the matrix E



Naive vs Robust Method

Naive method — least square error

r1 Fxg =0
Find F that minimize Z (xipExof

all points

Very bad if we have a lot of outliers

Robust method — RANSAC

(RANdom Sample Consensus)
Pick few random points to generate pose hypothesis
Evaluate and pick the best one



Monocular Scheme: Step 1

Input: - -

Use 5-point algorithm to solve
epipolar equation and generate
pose hypothesis in RANSAC

Frame(t,) Frame(t,)

method

Output:

\



Monocular Scheme: Step 2

Output:

Triangulate to obtain

3D points
Input: \'\\/
N
N




Monocular Scheme: Step 3

Use 3-point algorithm to
generate pose hypothesis in
RANSAC method

Input: 3D points, 2D
points on camera
Output: pose (R,1)

Repeat Step 3




Monocular Scheme

5-point algorithm => pose hypothesis
RANSAC

T

Triangulation => 3D points

&

3-point algorithm => pose hypothesis
RANSAC

&

Re-triangulate 3D points




Stereo Scheme

Triangulate points from stereo pairs
(relative pose between
two cameras is known)

!

3-point algorithm => pose hypothesis
RANSAC

&

Re-triangulate 3D points




Stereo vs. Monocular

e More information
* No scale ambiguity
* More stable when motion is small



Experiments

Different Platforms

Hand-held /
head-mounted




Experiments

* Evaluate performance of visual odometry
system

Ground truth: Integrated differential GPS
(DGPS) and high-precision inertial navigation
system (INS) — VNS.

e Align coordinate systems of visual odometry
and VNS by a least square fit of initial 20

poses.



Experiments

Speed and Accuracy

Table |. Approximate average timings per 720 240 frame of video for the monocular system components on a modest
550 MHz machine. Disparity range for the matching is given in percent of the image dimensions. The average timings for

the stereo version are very similat, the reason being that both systems are most of the SaM processing time performing
RANSAC estimations of the pose with respect to known 3D points.

Matching with disparity range

Feature detection 3% 5% 10% SaM

30 ms 34 ms 45 ms 160 ms 50 ms

Table Il. Metric accuracy of visual odometry position estimates. The number of frames processed is given in Column 2.
Total vehicle path lengths estimated by DGPS and visual odometry are given in Columns 3 and 4 with relative error in
distance given in Column 4.

Run Frames DGPS (m) VisOdo (m) % error
Loops 1602 185.88 183.90 1.07
Meadow 2263 266.16 269.77 1.36

Woods 2944 365.96 372.02 1.63




Experiments

Visual Odometry vs. Differential GPS
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Figure 6. Vehicle positions estimated with visual odom-
etry (left) and DGPS (right). These plots show that the
vehicle path is accurately recovered by visual odometry
during tight cornering as well as extended operation. In
this example, the vehicle completes three tight laps of di-
ameter about 20 m (traveling 184 m total) and returns to
the same location. The error in distance between the end-

points of the trip is only 4.1 m.
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Figure 7. Visual odometry vehicle position (light line) su-
perimposed on DGPS output (dark line). No a priori
knowledge of the motion was used to produce the visual
odometry. A completely general 3D trajectory was esti-
mated in all our experiments. In particular, we did not
explicitly force the trajectory to stay upright or within a
certain height of the ground plane.



Experiments

Visual Odometry vs. Inertial Navigation System (INS)
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Figure 8. Yaw angle in degrees from INS and visual odometry. The correspondence is readily apparent. In most cases
visual odometry yields subdegree accuracy in vehicle heading recovery. The accumulated yaw angle is shown with

respect to frame number.



Experiments

Visual Odometry vs. Wheel Recorder

Figure 14: An example of the effect of wheel slip without visual odometry or GPS. DGPS - Dark Blue
plus signs. Wheel encoders fused with IMU - Thin Red. Visual odometry - Thick Green. Note the
incorrect overshoots from the wheel encoders. The motion of the vehicle was left to right in the bottom

arc and right to left in the top arc.
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Figure 15: Results corrected by adding the visual odometry. DGPS - Dark Blue plus signs. Wheel

encoders fused with visual odometry - Thin Red. Visual odometry - Thick Green.



Comparison with Existing Systems

* GPS/DGPS
May have better accuracy but GPS signals are
not always available.

* Wheel encoder
Suffer from wheel slip.

* Visual Odometry + IMU
Smoother path than GPS and more accurate
than wheel encoders.



Conclusion

A real-time ego motion estimation system.

Work both on monocular camera and
stereo head.

Results are accurate and robust.



