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Pressure is on DSP 

• Shannon/Nyquist sampling theorem 
– For general band-limited signal, no information loss if we sample at 2x 

signal bandwidth 

• DSP revolution: 
– sample first and ask questions later 
  

• Increasing pressure on DSP hardware, algorithms 
– ever faster sampling and processing rates 
– ever larger dynamic range 
– ever larger, higher-dimensional data 
– ever lower energy consumption 
… 

 



• What does general signal mean (say a general image)?  
– With high probability it’s something like this … 

But wait … Do we really need general signal? 



• What does general signal mean (say a general image)?  
– But usually we are just interested in the structured signal like this … 

But wait … Do we really need general signal? 



From general signal to structured signal 

• We want to make more assumption (rational?) about our signal in order to 
lower the limit of sampling rate, let compare more between our previous 
assumption and the reality: 
 
 
 
 
 
 
 
 

• A lot of high/low level structures, e.g. edges, continuation. 
 



• Inspired by the statistics of some transforms (DCT, Wavelet …), 
we assume our signal is sparse in some domain. 
 
 
 
 
 

 
• K-sparse: K large coefficients, where K << N 

 

Sparse Representation 



• The previous sample-then-compress framework: 
– K largest coefficients are located and the rest N-K smallest coefficients 

are discarded. 
– The K values and locations of the largest coefficients are encoded. 

 
• Major three inefficiencies: 

– N maybe large even K is small 
– N coefficients need to be computed even N-K of them will be 

discarded 
– Encoding of locations introduce an overhead 

Transform Coding and Its Inefficiency 



• A general M-dimensional linear measurement: 

The Compressive Sensing Problem 

• Φ is not adaptive and it’s stable – the salient information in 
any K-sparse or compressive signal is not damaged by this 
dimension reduction process. 

• Then we recover the signal based on y,Φ,Ψ 
 



• If the signal is not compressive, the problem is ill-conditioned 

The Solution to CS 

• If the K locations are know, a necessary and sufficient 
condition for well-conditioning is: 
– The matrixΘpreserves the lengths of these K-sparse vectors. 

 
  

• A sufficient condition for a stable solution for both K-sparse 
and compressible signals isΘsatisfies the above condition for 
an arbitrary 3K-sparse vector v. This is referred to as restricted 
isometry property (RIP). 

• Incoherence: rows of Φdo not sparsely represent Ψ. 



• However fortunately such a Φ is easy to construct as a 
random matrix and the previous condition is satisfied with 
high probability. 

• For instance: let each elements of Φbe i.i.d Gaussian random 
variables ~ N(0, 1/M). 
– Quick verification by expectation and Chebyshev inequality … 

The Solution to CS: Sampling 



• E.g. Lasso Regression 

The Solution to CS: Reconstruction 

• The basic idea is to preserve the information and also seek 
sparse representation. 
 • Other similar convex optimization based on this idea can also 
be formulated, say, make the L2 norm a convex constraint. 

 
 



An Image Filling-in Case: Single Pixel Camera 



• Non-orthogonal basis map 
• Redundant basis map 
• Dictionary learning: Sparse coding, Independent component 

analysis (infomax etc.)  

Further Relaxation 



• Transform Sparsity 
 

• Non-coherency 
 

• Non-linear Construction (Optimization) 
 
 
 

Conclusion of Compressive Sensing Approach 



Thanks! 


	A Quick Introduction on Compressive Sensing
	Pressure is on DSP
	But wait … Do we really need general signal?
	But wait … Do we really need general signal?
	From general signal to structured signal
	Sparse Representation
	Transform Coding and Its Inefficiency
	The Compressive Sensing Problem
	The Solution to CS
	The Solution to CS: Sampling
	The Solution to CS: Reconstruction
	An Image Filling-in Case: Single Pixel Camera
	Further Relaxation
	Conclusion of Compressive Sensing Approach
	Thanks!

