A Quick Introduction on
Compressive Sensing



Pressure is on DSP

e Shannon/Nyquist sampling theorem

— For general band-limited signal, no information loss if we sample at 2x
signal bandwidth

 DSP revolution: (1] (L1

— sample first and ask questions later | || |

* Increasing pressure on DSP hardware, algorithms
— ever faster sampling and processing rates
— ever larger dynamic range
— ever larger, higher-dimensional data
— ever lower energy consumption



But wait ... Do we really need general signal?

e What does general signal mean (say a general image)?
— With high probability it’s something like this ...




But wait ... Do we really need general signal?

e What does general signal mean (say a general image)?

— But usually we are just interested in the structured signal like this ...




From general signal to structured signal

 We want to make more assumption (rational?) about our signal in order to
lower the limit of sampling rate, let compare more between our previous
assumption and the reality:
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* Alot of high/low level structures, e.g. edges, continuation.



Sparse Representation

* Inspired by the statistics of some transforms (DCT, Wavelet ...),
we assume our signal is sparse in some domain.
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o K-sparse: K large coefficients, where K << N

KN largest terms



Transform Coding and Its Inefficiency

e The previous sample-then-compress framework:

— K largest coefficients are located and the rest N-K smallest coefficients
are discarded.

— The K values and locations of the largest coefficients are encoded.

e Major three inefficiencies:
— N maybe large even K is small

— N coefficients need to be computed even N-K of them will be
discarded

— Encoding of locations introduce an overhead



The Compressive Sensing Problem

A general M-dimensional linear measurement:
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e @ is not adaptive and it’s stable — the salient information in
any K-sparse or compressive signal is not damaged by this
dimension reduction process.

e Then we recover the signal based on y,O,W



The Solution to CS

If the signal is not compressive, the problem is ill-conditioned

If the K locations are know, a necessary and sufficient
condition for well-conditioning is:

— The matrix@preserves the lengths of these K-sparse vectors.
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A sufficient condition for a stable solution for both K-sparse

and compressible signals isOsatisfies the above condition for
an arbitrary 3K-sparse vector v. This is referred to as restricted
isometry property (RIP).

Incoherence: rows of ®do not sparsely represent W.
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The Solution to CS: Sampling

e However fortunately such a @ is easy to construct as a
random matrix and the previous condition is satisfied with
high probability.

 For instance: let each elements of ®be i.i.d Gaussian random
variables ~ N(0, 1/M).

— Quick verification by expectation and Chebyshev inequality ...



The Solution to CS: Reconstruction

e E.g. Lasso Regression

: 2
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e The basic idea is to preserve the information and also seek
sparse representation.

e Other similar convex optimization based on this idea can also
be formulated, say, make the L2 norm a convex constraint.

(a) (b) (c)



An Image Filling-in Case: Single Pixel Camera
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Further Relaxation

Non-orthogonal basis map
Redundant basis map
Dictionary learning: Sparse coding, Independent component

analysis (infomax etc.)
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Conclusion of Compressive Sensing Approach

e Transform Sparsity
e Non-coherency

e Non-linear Construction (Optimization)



Thanks!
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