A Quick Introduction on Compressive Sensing

Yubei Chen

Pressure is on DSP

- Shannon/Nyquist sampling theorem
 - For general band-limited signal, no information loss if we sample at 2x signal bandwidth
- DSP revolution:
 - sample first and ask questions later

- Increasing pressure on DSP hardware, algorithms
 - ever faster sampling and processing rates
 - ever larger dynamic range
 - ever larger, higher-dimensional data
 - ever lower energy consumption

• • •

But wait ... Do we really need general signal?

- What does general signal mean (say a general image)?
 - With high probability it's something like this ...

But wait ... Do we really need general signal?

- What does general signal mean (say a general image)?
 - But usually we are just interested in the structured signal like this ...

From general signal to structured signal

• We want to make more assumption (rational?) about our signal in order to lower the limit of sampling rate, let compare more between our previous assumption and the reality:

A lot of high/low level structures, e.g. edges, continuation.

Sparse Representation

Inspired by the statistics of some transforms (DCT, Wavelet ...),
 we assume our signal is sparse in some domain.

$$x = \sum_{i=1}^{N} \alpha_i \psi_i \quad \alpha_i = \langle x, \psi_i \rangle$$

$$\mathbb{R}^N$$

$$K^{-\dim}$$
hyperplanes

K-sparse: K large coefficients, where K << N

$$x \approx \sum_{K \ll N \text{ largest terms}} \alpha_i \psi_i$$

Transform Coding and Its Inefficiency

- The previous sample-then-compress framework:
 - K largest coefficients are located and the rest N-K smallest coefficients are discarded.
 - The K values and locations of the largest coefficients are encoded.
- Major three inefficiencies:
 - N maybe large even K is small
 - N coefficients need to be computed even N-K of them will be discarded
 - Encoding of locations introduce an overhead

The Compressive Sensing Problem

A general M-dimensional linear measurement:

$$y = \Phi x = \Phi \Psi s = \Theta s$$

- Φ is not adaptive and it's stable the salient information in any K-sparse or compressive signal is not damaged by this dimension reduction process.
- Then we recover the signal based on y,Φ,Ψ

The Solution to CS

- If the signal is not compressive, the problem is ill-conditioned
- If the K locations are know, a necessary and sufficient condition for well-conditioning is:
 - The matrixΘpreserves the lengths of these K-sparse vectors.

$$1 - \epsilon \le \frac{\|\Theta \mathbf{v}\|_2}{\|\mathbf{v}\|_2} \le 1 + \epsilon$$

- A sufficient condition for a stable solution for both K-sparse and compressible signals isΘsatisfies the above condition for an arbitrary 3K-sparse vector v. This is referred to as restricted isometry property (RIP).
- Incoherence: rows of Φdo not sparsely represent Ψ.

The Solution to CS: Sampling

- However fortunately such a Φ is easy to construct as a random matrix and the previous condition is satisfied with high probability.
- For instance: let each elements of Φbe i.i.d Gaussian random variables ~ N(0, 1/M).
 - Quick verification by expectation and Chebyshev inequality ...

The Solution to CS: Reconstruction

E.g. Lasso Regression

$$\min_{S} \|y - \varPhi \Psi s\|_{2}^{2} + \lambda \|s\|_{1}$$

- The basic idea is to preserve the information and also seek sparse representation.
- Other similar convex optimization based on this idea can also be formulated, say, make the L2 norm a convex constraint.

An Image Filling-in Case: Single Pixel Camera

Further Relaxation

- Non-orthogonal basis map
- Redundant basis map
- Dictionary learning: Sparse coding, Independent component analysis (infomax etc.)

Conclusion of Compressive Sensing Approach

Transform Sparsity

Non-coherency

Non-linear Construction (Optimization)

