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Relative Data Redundancy 

► Let b and b’ denote the number of bits in two representations of 
the same information, the relative data redundancy R is  

 

           R = 1-1/C 

 

    C is called the compression ratio, defined as 

 

           C = b/b’ 

 

e.g., C = 10, the corresponding relative data redundancy of the larger 
representation is 0.9, indicating that 90% of its data is redundant 
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Why do we need compression? 

► Data storage 

 

 

► Data transmission 
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How can we implement compression? 

► Coding redundancy 

    Most 2-D intensity arrays contain more bits than are 
needed to represent the intensities 

 

► Spatial and temporal redundancy 

    Pixels of most 2-D intensity arrays are correlated 
spatially and video sequences are temporally correlated 

 

► Irrelevant information 

    Most 2-D intensity arrays contain information that is 
ignored by the human visual system 
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Examples of Redundancy 
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Coding Redundancy 

1

0

The average number of bits required to represent each pixel is

( ) ( ) 0.25(2) 0.47(1) 0.24(3) 0.03(3) 1.81
L

avg k r k

k

L l r p r bits




     

8
4.42

1.81

1 1/ 4.42 0.774

C

R

 

  
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Spatial and Temporal Redundancy 

1. All 256 intensities are equally probable. 

2. The pixels along each line are identical.

3. The intensity of each line was selected randomly.
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Spatial and Temporal Redundancy 

1. All 256 intensities are equally probable. 

2. The pixels along each line are identical.

3. The intensity of each line was selected randomly.

Run-length pair specifies the start of a new intensity and the 

number of consecutive pixels that have that intensity.

Each 256-pixel line of the original representation is replaced

by a single 8-bit intensity value and length 256 in the run-length

representation.

The compression ratio is 

256 256 8
128 :1

(256 256) 8

 


 
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Irrelevant Information 

256 256 8 / 8

65536 :1

 


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Measuring Image Information 

A random event E with probability P(E) is said to contain

1
             ( )  log -log ( )

( )

units of information.

I E P E
P E

 
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Measuring Image Information 

1 2

1 2

Given a source of statistically independent random events from a

discrete set of possible events { , ,  ...,  } with associated 

probabilities { ( ),  ( ),  ...,  ( )}, the average information 

per s

J

J

a a a

P a P a P a

1

ource output, called the entropy of the source

                    - ( ) log ( )

 is called source symbols. Because they are statistically independent, 

the source called  .

J

j j

j

j

H P a P a

a

zero memory source








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Measuring Image Information 

If an image is considered to be the output of an imaginary zero-memory

"intensity source", we can use the histogram of the observed image to

estimate the symbol probabilities of the source. The intensit

1

r r

0

r

y source's 

entropy becomes

                    - ( ) log ( )

( ) is the normalized histogram.

L

k k

k

k

H p r p r

p r





 
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Measuring Image Information 

2 2 2 2

For the fig.8.1(a), 

[0.25log 0.25 0.47 log 0.47 0.25log 0.25 0.03log 0.03]

1.6614 bits/pixel

H 

   


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Fidelity Criteria 

1/2
21 1

0 0

Let ( , ) be an input image and ( , ) be an approximation 

of ( , ). The images are of size .

 

The - -   is

1
       ( , ) ( , )

M N

rms

x y

f x y f x y

f x y M N

root mean square error

e f x y f x y
MN



  

 



  
     


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Fidelity Criteria 

ms

21 1

0 0

ms 21 1

0 0

The -  - -   of the output image, 

denoted SNR

( , )

       SNR

( , ) ( , )

M N

x y

M N

x y

mean square signal to noise ratio

f x y

f x y f x y

  

 

  

 

 
  


 

  




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RMSE = 5.17 RMSE = 15.67 RMSE = 14.17 
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Image Compression Models 
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Image Compression Standards 
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Some Basic Compression Methods: 
Huffman Coding 
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Some Basic Compression Methods: 
Huffman Coding 

The average length of this code is

  0.4*1 0.3*2 0.1*3 0.1*4 0.06*5 0.04*5

       = 2.2 bits/pixel

avgL      
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Some Basic Compression Methods: 
Golomb Coding 

Given a nonnegative integer  and a positive integer divisor 0,

the Golomb code of  with respect to , denoted ( ), constructed 

as follows:

Step 1. Form the unary code of quotient /

(The unary

m

n m

n m G n

n m



  

2

 code of integer  is defined as  1s followed by a 0)

Step2. Let k= log , 2 , mod ,and compute truncated

remainder '  such that

 truncated to -1 bits        0
                '

 trunca

k

q q

m c m r n m

r

r k r c
r

r c

    

 


 ted to  bits   otherwise

Step 3. Concatenate the results of steps 1 and 2.

k




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Some Basic Compression Methods: 
Golomb Coding 

2

Step 1. Form the unary code of quotient /

(The unary code of integer  is defined as

  1s followed by a 0)

Step2. Let k= log , 2 , mod ,

and compute truncated remainder '  such that

      

k

n m

q

q

m c m r n m

r

r

  

    

 truncated to -1 bits        0
'

 truncated to  bits   otherwise

Step 3. Concatenate the results of steps 1 and 2.

r k r c

r c k

 
 



4

2

2

4

(9) :

9 / 4 2,

the unary code is 110

k= log 4 2, 2 4 0,

9 mod 4 1.

' 01

(9) 11001

G

c

r

r

G

  

     

 




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Some Basic Compression Methods: 
Golomb Coding 

2

Step 1. Form the unary code of quotient /

(The unary code of integer  is defined as

  1s followed by a 0)

Step2. Let k= log , 2 , mod ,

and compute truncated remainder '  such that

      

k

n m

q

q

m c m r n m

r

r

  

    

 truncated to -1 bits        0
'

 truncated to  bits   otherwise

Step 3. Concatenate the results of steps 1 and 2.

r k r c

r c k

 
 



4

2

2

4

(9) :

9 / 4 2,

the unary code is 110

k= log 4 2, 2 4 0,

9 mod 4 1.

' 01

(9) 11001

G

c

r

r

G

  

     

 




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Some Basic Compression Methods: 
Golomb Coding 

2

Step 1. Form the unary code of quotient /

(The unary code of integer  is defined as

  1s followed by a 0)

Step2. Let k= log , 2 , mod ,

and compute truncated remainder '  such that

      

k

n m

q

q

m c m r n m

r

r

  

    

 truncated to -1 bits        0
'

 truncated to  bits   otherwise

Step 3. Concatenate the results of steps 1 and 2.

r k r c

r c k

 
 



4 (7)?G
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Some Basic Compression Methods: 
Arithmetic Coding 



4/14/2014 29 

Some Basic Compression Methods: 
Arithmetic Coding 

How to encode a2a1a2a4? 
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1.0 

0.8 

0.4 

0.2 

0.8 

0.72 

0.56 

0.48 

0.4 0.0 

0.72 

0.688 

0.624 

0.592 

0.592 

0.5856 

0.5728 

0.5664 

Therefore, the 

message is 

a3a3a1a2a4 

0.5728 

0.57152 

056896 

0.56768 

Decode 0.572. The length of the message is 5. 

Since 0.8>code word > 0.4, the first symbol should be a3. 

 

0.56 0.56 0.5664 
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LZW (Dictionary coding) 

LZW (Lempel-Ziv-Welch) coding, assigns fixed-length code 

words to variable length sequences of source symbols, but 

requires no a priori knowledge of the probability of the source 

symbols.  

LZW is used in: 

•Tagged Image file format (TIFF) 

•Graphic interchange format (GIF) 

•Portable document format (PDF) 

LZW  was formulated in 1984 
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The Algorithm: 

•A codebook or “dictionary” containing the source 

symbols is constructed. 

•For 8-bit monochrome images, the first 256 words of 

the dictionary are assigned to the gray levels 0-255 

•Remaining part of the dictionary is filled with 

sequences of the gray levels 
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Important features of LZW 

1.  The dictionary is created while the data are being 

encoded. So encoding can be done “on the fly” 

2. The dictionary is not required to be transmitted. The 

dictionary will be built up in the decoding 

3. If the dictionary “overflows” then we have to reinitialize 

the dictionary and add a bit to each one of the code words. 

4.  Choosing a large dictionary size avoids overflow, but 

spoils compressions 
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Example: 

39  39  126  126 

39  39  126  126 

39  39  126  126 

39  39  126  126 
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Some Basic Compression Methods: 
LZW Coding 

39 39 126 126 
39 39 126 126 
39 39 126 126 
39 39 126 126 
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Let the bit stream received be:  

39  39 126 126 256 258 260 259 257    126

     

      In LZW, the dictionary which was used for encoding 

need not be sent with the image. A separate dictionary 

is built by the decoder, on the “fly”, as it reads the 

received code words. 

Decoding LZW 
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Recognized Encoded 
value 

pixels Dic. address Dic. entry 

39 39 

39 39 39 256 39-39 

39 126 126 257 39-126 

126 126 126 258 126-126 

126 256 39-39 259 126-39 

256 258 126-126 260 39-39-126 

258 260 39-39-126 261 126-126-39 

260 259 126-39 262 
39-39-126-

126 

259 257 39-126 263 126-39-39 

257 126 126 264 39-126-126 
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Some Basic Compression Methods: 
Run-Length Coding 

1. Run-length Encoding, or RLE is a technique used to reduce 

the size of a repeating string of characters.  

 

2. This repeating string is called a run, typically RLE encodes a 

run of symbols into two bytes , a count and a symbol.  

 

3. RLE can compress any type of data 

 

4. RLE cannot achieve high compression ratios compared to 

other compression methods 
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Some Basic Compression Methods: 
Run-Length Coding 

 

5. It is easy to implement and is quick to execute. 

 

6. Run-length encoding is supported by most bitmap file formats 

such as TIFF, BMP and PCX  
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Some Basic Compression Methods: 
Run-Length Coding 

 

 
WWWWWWWWWWWWBWWWWWWWWWWWWBBBW
WWWWWWWWWWWWWWWWWWWWWWWBWWWW
WWWWWWWWWW  

 
 
RLE coding: 
 
    12W1B12W3B24W1B14W  
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Some Basic Compression Methods: 
Symbol-Based Coding 

 

    In symbol- or token-based coding, an image is    
represented as a collection of frequently occurring  

    sub-images, called symbols.   
 
   Each symbol is stored in a symbol dictionary   
 
   Image is coded as a set of triplets  
 
   {(x1,y1,t1), (x2, y2, t2), …} 
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Some Basic Compression Methods: 
Symbol-Based Coding 
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Some Basic Compression Methods: 
Bit-Plane Coding 

   An m-bit gray scale image can be converted into m binary 

images by bit-plane slicing. These individual images are 
then encoded using run-length coding. 

 

   Code the bitplanes separately, using RLE (flatten each 
plane row-wise into a 1D array), Golomb coding, or 
any other lossless compression technique.  

 
• Let I be an image where every pixel value is n-bit long  

 
• Express every pixel in binary using n bits  

 
• Form n binary matrices (called bitplanes), where the i-th 

matrix consists of the i-th bits of the pixels of I. 
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Some Basic Compression Methods: 
Bit-Plane Coding 

 
 
Example: Let I be the following 2x2 image where the pixels 

are 3 bits long  
                  101   110 
                  111   011  
 
The corresponding 3 bitplanes are:  
 1      1            0      1           1      0  
 1      0            1      1           1      1  
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However, a small difference in the gray level of 

adjacent pixels can cause a disruption of the run of 

zeroes or ones. 

Eg: Let us say one pixel has a gray level of 127 and the 

next pixel has a gray level of 128. 

In binary: 127 = 01111111 

& 128 = 10000000 

Therefore a small change in gray level has decreased 

the run-lengths in all the bit-planes! 
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1. Gray coded images are free of this problem which affects  

images which are in binary format. 

2.  In gray code the representation of adjacent gray levels 

will differ only in one bit (unlike binary format where all 

the bits can change. 

GRAY CODE 
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Let gm-1…….g1g0 represent the gray code 

representation of a binary number. 

Then: 

11

1 20     









mm

iii

ag

miaag

In gray code: 

127 = 01000000 

128 = 11000000 
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Gray Coding 

    To convert a binary number b1b2b3..bn-1bn to its 
corresponding binary reflected Gray code. 

 
    Start at the right with the digit  bn.  If the bn-1  is 1, 

replace bn by 1-bn ; otherwise, leave it unchanged. Then 
proceed to bn-1 .  

 
    Continue up to the first digit b1, which is kept the same 

since  it is assumed to be a b0 =0.  
 
    The resulting number is the reflected binary Gray code.  
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Examples: Gray Coding 

    Dec            Gray                Binary 

  
     0                 000                 000 
     1                 001                 001  
     2                 011                 010  
     3                 010                 011  
     4                 110                 100  
     5                 111                 101  
     6                 101                 110  
     7                 100                 111  
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Decoding a gray coded image 

The MSB is retained as such,i.e., 

11

1 20     









mm

iii

ga

miaga
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Differential Pulse Code Modulation (DPCM) 

► Example: 

 

   AAABBCDDDD encoded as A0001123333 

 

► Change reference symbol if delta becomes too large 

 

► Works better than RLE for many digital images 
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Block Transform Coding 
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Block Transform Coding 

1 1

0 0

Consider a subimage of size  whose forward, discrete

transform ( , ) can be expressed in terms of the relation

        ( , ) ( , ) ( , , , )

for , 0,1,2,..., -1.

n n

x y

n n

T u v

T u v g x y r x y u v

u v n

 

 








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Block Transform Coding 

1 1

0 0

Given ( , ),  ( , ) similarly can be obtained using the 

generalized inverse discrete transform

        ( , ) ( , ) ( , , , )

for , 0,1,2,..., -1.

n n

u v

T u v g x y

g x y T u v s x y u v

x y n

 

 






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Image transform 

► Two main types: 

  -orthogonal transform:  

   e.g. Walsh-Hdamard transform, DCT 

 

  -subband transform:  

   e.g. Wavelet transform 
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Orthogonal transform 

►Orthogonal matrix W 

 

                                      C=W．D 

 

 Reducing redundancy 

 Isolating frequencies 

 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

w w w w

w w w w

w w w w

w w w w

 
 
 
 
 
 

1

2

3

4

c

c

c

c

 
 
  
 
 
 

1

2

3

4

d

d

d

d

 
 
 
 
 
 
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Block Transform Coding 
Walsh-Hadamard transform (WHT) 
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Block Transform Coding 
Discrete Cosine Transform (DCT) 

( , , , ) ( , , , )

(2 1) (2 1)
( ) ( ) cos cos

2 2

1
                    for / 0

where ( / )
2

      for / 1, 2,..., -1

r x y u v s x y u v

x u y v
u v

n n

u v
n

u v

u v n
n

 
 





    
    

   





 




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Example 
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In each case, 50% of the resulting coefficients were truncated and taking the 
inverse transform of the truncated coefficients arrays.  

RMSE = 2.32 RMSE = 1.78 RMSE = 1.13 
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Subimage Size Selection 
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Subimage Size Selection 



4/14/2014 66 

Bit Allocation 

    The overall process of truncating, quantizing, and coding 
the coefficients of a transformed subimage is commonly 

called bit allocation 
 

Zonal coding 
    The retained coefficients are selected on the basis of 

maximum variance 
 

Threshold coding 
     The retained coefficients are selected on the basis of 

maximum magnitude 
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RMSE = 6.5 

RMSE = 4.5 
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Threshold Coding 

   

( , )
( , )

( , )

(0,0) 0,1 ... 0, 1

(1,0) ... ... ...

.... ... ... ...

( 1,0) ... ... ( 1, 1)

T u v
T u v round

Z u v

Z Z Z n

Z
Z

Z n Z n n

  
  

 

  
 
 
 
 

   
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Threshold Coding 
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Threshold Coding 

12:1 

30:1 

19:1 

85:1 

49:1 
182:1 
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Fact about JPEG Compression 

 
► JPEG stands for Joint Photographic Experts Group 

 

► Used on 24-bit color files. 

 

► Works well on photographic images. 

 

► Although it is a lossy compression technique, it yields an 
excellent quality image with high compression rates. 
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Fact about JPEG Compression 

 
► It defines three different coding systems: 

 

    1. a lossy baseline coding system, adequate for most 
compression applications 

 

    2. an extended coding system for greater compression, 
higher precision, or progressive reconstruction applications 

 

    3. A lossless independent coding system for reversible 
compression 
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Steps in JPEG Compression 

1.  (Optionally) If the color is represented in RGB mode, translate it 
to YUV.   

 

2.  Divide the file into 8 X 8 blocks. 

 

3.  Transform the pixel information from the spatial domain to the 
frequency domain with the Discrete Cosine Transform.    

 

4.  Quantize the resulting values by dividing each coefficient by an 
integer value and rounding off to the nearest integer.  

 

5.  Look at the resulting coefficients in a zigzag order.  Do a run-
length encoding of the coefficients ordered in this manner.  
Follow by Huffman coding.   



4/14/2014 74 

Step 1a:  Converting RGB to YUV 

► YUV color mode stores color in terms of its luminance 
(brightness) and chrominance (hue).   

 

► The human eye is less sensitive to chrominance than 
luminance. 

 

► YUV is not required for JPEG compression, but it gives a 
better compression rate. 
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RGB vs. YUV 

► It’s simple arithmetic to convert RGB to YUV.  The formula 
is based on the relative contributions that red, green, and 
blue make to the luminance and chrominance factors. 

 

► There are several different formulas in use depending on 
the target monitor.  

 

For example: 

Y = 0.299 * R + 0.587 * G +0.114 * B 

U = -0.1687 * R – 0.3313* G + 0.5 * B +128 

V = 0.5 * R – 0.4187 * G – 0.813 * B + 128 
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Step 1b:  Downsampling 

► The chrominance information can (optionally) be 
downsampled. 

 

► The notation 4:1:1 means that for each block of four 
pixels, you have 4 samples of luminance information (Y), 
and 1 each of the two chrominance components (U and V).                           
   

Y Y 

Y Y 

U, V 
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Step 2: Divide into 8 X 8 blocks 

► Note that with YUV color, you have 16 pixels of information 
in each block for the Y component (though only 8 in each 
direction for the U and V components). 

 

► If the file doesn’t divide evenly into 8 X 8 blocks, extra 
pixels are added to the end and discarded after the 
compression. 

 

► The values are shifted “left” by subtracting 128. 
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Discrete Cosine Transform 

► The DCT transforms the data from the spatial domain 
to the frequency domain. 

 

► The spatial domain shows the amplitude of the color as 
you move through space 

 

► The frequency domain shows how quickly the 
amplitude of the color is changing from one pixel to the 
next in an image file. 
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Step 3:  DCT 

► The frequency domain is a better representation for the 
data because it makes it possible for you to separate out – 
and throw away – information that isn’t very important to 
human perception. 

 

► The human eye is not very sensitive to high frequency 
changes – especially in photographic images, so the high 
frequency data can, to some extent, be discarded. 
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Step 3:  DCT 

► The color amplitude information can be thought of as a 
wave (in two dimensions). 

 

► You’re decomposing the wave into its component 
frequencies. 

 

► For the 8 X 8 matrix of color data, you’re getting an 8 X 8 
matrix of coefficients for the frequency components. 
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Step 4:  Quantize the Coefficients 
Computed by the DCT 

► The DCT is lossless in that the reverse DCT will give you 
back exactly your initial information (ignoring the rounding 
error that results from using floating point numbers.) 

 

► The values from the DCT are initially floating-point. 

 

► They are changed to integers by quantization. 
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Step 4:  Quantization 

► Quantization involves dividing each coefficient by an 
integer between 1 and 255 and rounding off. 

 

► The quantization table is chosen to reduce the precision of 
each coefficient to no more than necessary. 

 

► The quantization table is carried along with the 
compressed file. 
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Step 5:  Arrange in “zigzag” order 

► This is done so that the coefficients are in order of 
increasing frequency. 

 

► The higher frequency coefficients are more likely to be 0 
after quantization. 

 

► This improves the compression of run-length encoding. 

 

► Do run-length encoding and Huffman coding. 
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Assuming the DC coefficient of the transformed and quantized 
subimage to its immediate left was -17.  
 
The resulting of DPCM difference is [-26 – (-17)] = -9. 
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JPEG at 0.125 bpp (enlarged) 

C. Christopoulos, A. Skodras, T. Ebrahimi, JPEG2000 (online tutorial) 
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JPEG2000 at 0.125 bpp 

C. Christopoulos, A. Skodras, T. Ebrahimi, JPEG2000 (online tutorial) 


