

 Image Compression

4/14/2014 2

Relative Data Redundancy

► Let b and b’ denote the number of bits in two representations of
the same information, the relative data redundancy R is

 R = 1-1/C

 C is called the compression ratio, defined as

 C = b/b’

e.g., C = 10, the corresponding relative data redundancy of the larger
representation is 0.9, indicating that 90% of its data is redundant

4/14/2014 3

Why do we need compression?

► Data storage

► Data transmission

4/14/2014 4

How can we implement compression?

► Coding redundancy

 Most 2-D intensity arrays contain more bits than are
needed to represent the intensities

► Spatial and temporal redundancy

 Pixels of most 2-D intensity arrays are correlated
spatially and video sequences are temporally correlated

► Irrelevant information

 Most 2-D intensity arrays contain information that is
ignored by the human visual system

4/14/2014 5

Examples of Redundancy

4/14/2014 6

Coding Redundancy

1

0

The average number of bits required to represent each pixel is

() () 0.25(2) 0.47(1) 0.24(3) 0.03(3) 1.81
L

avg k r k

k

L l r p r bits




     

8
4.42

1.81

1 1/ 4.42 0.774

C

R

 

  

4/14/2014 7

Spatial and Temporal Redundancy

1. All 256 intensities are equally probable.

2. The pixels along each line are identical.

3. The intensity of each line was selected randomly.

4/14/2014 8

Spatial and Temporal Redundancy

1. All 256 intensities are equally probable.

2. The pixels along each line are identical.

3. The intensity of each line was selected randomly.

Run-length pair specifies the start of a new intensity and the

number of consecutive pixels that have that intensity.

Each 256-pixel line of the original representation is replaced

by a single 8-bit intensity value and length 256 in the run-length

representation.

The compression ratio is

256 256 8
128 :1

(256 256) 8

 


 

4/14/2014 9

Irrelevant Information

256 256 8 / 8

65536 :1

 



4/14/2014 10

Measuring Image Information

A random event E with probability P(E) is said to contain

1
 () log -log ()

()

units of information.

I E P E
P E

 

4/14/2014 11

Measuring Image Information

1 2

1 2

Given a source of statistically independent random events from a

discrete set of possible events { , , ..., } with associated

probabilities { (), (), ..., ()}, the average information

per s

J

J

a a a

P a P a P a

1

ource output, called the entropy of the source

 - () log ()

 is called source symbols. Because they are statistically independent,

the source called .

J

j j

j

j

H P a P a

a

zero memory source









4/14/2014 12

Measuring Image Information

If an image is considered to be the output of an imaginary zero-memory

"intensity source", we can use the histogram of the observed image to

estimate the symbol probabilities of the source. The intensit

1

r r

0

r

y source's

entropy becomes

 - () log ()

() is the normalized histogram.

L

k k

k

k

H p r p r

p r





 

4/14/2014 13

Measuring Image Information

2 2 2 2

For the fig.8.1(a),

[0.25log 0.25 0.47 log 0.47 0.25log 0.25 0.03log 0.03]

1.6614 bits/pixel

H 

   



4/14/2014 14

Fidelity Criteria

1/2
21 1

0 0

Let (,) be an input image and (,) be an approximation

of (,). The images are of size .

The - - is

1
 (,) (,)

M N

rms

x y

f x y f x y

f x y M N

root mean square error

e f x y f x y
MN



  

 



  
     



4/14/2014 15

Fidelity Criteria

ms

21 1

0 0

ms 21 1

0 0

The - - - of the output image,

denoted SNR

(,)

 SNR

(,) (,)

M N

x y

M N

x y

mean square signal to noise ratio

f x y

f x y f x y

  

 

  

 

 
  


 

  





4/14/2014 16

RMSE = 5.17 RMSE = 15.67 RMSE = 14.17

4/14/2014 17

Image Compression Models

4/14/2014 18

Image Compression Standards

4/14/2014 19

4/14/2014 20

4/14/2014 21

4/14/2014 22

Some Basic Compression Methods:
Huffman Coding

4/14/2014 23

Some Basic Compression Methods:
Huffman Coding

The average length of this code is

 0.4*1 0.3*2 0.1*3 0.1*4 0.06*5 0.04*5

 = 2.2 bits/pixel

avgL      

4/14/2014 24

Some Basic Compression Methods:
Golomb Coding

Given a nonnegative integer and a positive integer divisor 0,

the Golomb code of with respect to , denoted (), constructed

as follows:

Step 1. Form the unary code of quotient /

(The unary

m

n m

n m G n

n m



  

2

 code of integer is defined as 1s followed by a 0)

Step2. Let k= log , 2 , mod ,and compute truncated

remainder ' such that

 truncated to -1 bits 0
 '

 trunca

k

q q

m c m r n m

r

r k r c
r

r c

    

 


 ted to bits otherwise

Step 3. Concatenate the results of steps 1 and 2.

k





4/14/2014 25

Some Basic Compression Methods:
Golomb Coding

2

Step 1. Form the unary code of quotient /

(The unary code of integer is defined as

 1s followed by a 0)

Step2. Let k= log , 2 , mod ,

and compute truncated remainder ' such that

k

n m

q

q

m c m r n m

r

r

  

    

 truncated to -1 bits 0
'

 truncated to bits otherwise

Step 3. Concatenate the results of steps 1 and 2.

r k r c

r c k

 
 



4

2

2

4

(9) :

9 / 4 2,

the unary code is 110

k= log 4 2, 2 4 0,

9 mod 4 1.

' 01

(9) 11001

G

c

r

r

G

  

     

 





4/14/2014 26

Some Basic Compression Methods:
Golomb Coding

2

Step 1. Form the unary code of quotient /

(The unary code of integer is defined as

 1s followed by a 0)

Step2. Let k= log , 2 , mod ,

and compute truncated remainder ' such that

k

n m

q

q

m c m r n m

r

r

  

    

 truncated to -1 bits 0
'

 truncated to bits otherwise

Step 3. Concatenate the results of steps 1 and 2.

r k r c

r c k

 
 



4

2

2

4

(9) :

9 / 4 2,

the unary code is 110

k= log 4 2, 2 4 0,

9 mod 4 1.

' 01

(9) 11001

G

c

r

r

G

  

     

 





4/14/2014 27

Some Basic Compression Methods:
Golomb Coding

2

Step 1. Form the unary code of quotient /

(The unary code of integer is defined as

 1s followed by a 0)

Step2. Let k= log , 2 , mod ,

and compute truncated remainder ' such that

k

n m

q

q

m c m r n m

r

r

  

    

 truncated to -1 bits 0
'

 truncated to bits otherwise

Step 3. Concatenate the results of steps 1 and 2.

r k r c

r c k

 
 



4 (7)?G

4/14/2014 28

Some Basic Compression Methods:
Arithmetic Coding

4/14/2014 29

Some Basic Compression Methods:
Arithmetic Coding

How to encode a2a1a2a4?

4/14/2014 30

1.0

0.8

0.4

0.2

0.8

0.72

0.56

0.48

0.4 0.0

0.72

0.688

0.624

0.592

0.592

0.5856

0.5728

0.5664

Therefore, the

message is

a3a3a1a2a4

0.5728

0.57152

056896

0.56768

Decode 0.572. The length of the message is 5.

Since 0.8>code word > 0.4, the first symbol should be a3.

0.56 0.56 0.5664

4/14/2014 31

LZW (Dictionary coding)

LZW (Lempel-Ziv-Welch) coding, assigns fixed-length code

words to variable length sequences of source symbols, but

requires no a priori knowledge of the probability of the source

symbols.

LZW is used in:

•Tagged Image file format (TIFF)

•Graphic interchange format (GIF)

•Portable document format (PDF)

LZW was formulated in 1984

4/14/2014 32

The Algorithm:

•A codebook or “dictionary” containing the source

symbols is constructed.

•For 8-bit monochrome images, the first 256 words of

the dictionary are assigned to the gray levels 0-255

•Remaining part of the dictionary is filled with

sequences of the gray levels

4/14/2014 33

Important features of LZW

1. The dictionary is created while the data are being

encoded. So encoding can be done “on the fly”

2. The dictionary is not required to be transmitted. The

dictionary will be built up in the decoding

3. If the dictionary “overflows” then we have to reinitialize

the dictionary and add a bit to each one of the code words.

4. Choosing a large dictionary size avoids overflow, but

spoils compressions

4/14/2014 34

Example:

39 39 126 126

39 39 126 126

39 39 126 126

39 39 126 126

4/14/2014 35

4/14/2014 36

Some Basic Compression Methods:
LZW Coding

39 39 126 126
39 39 126 126
39 39 126 126
39 39 126 126

4/14/2014 37

Let the bit stream received be:

39 39 126 126 256 258 260 259 257 126

 In LZW, the dictionary which was used for encoding

need not be sent with the image. A separate dictionary

is built by the decoder, on the “fly”, as it reads the

received code words.

Decoding LZW

4/14/2014 38

Recognized Encoded
value

pixels Dic. address Dic. entry

39 39

39 39 39 256 39-39

39 126 126 257 39-126

126 126 126 258 126-126

126 256 39-39 259 126-39

256 258 126-126 260 39-39-126

258 260 39-39-126 261 126-126-39

260 259 126-39 262
39-39-126-

126

259 257 39-126 263 126-39-39

257 126 126 264 39-126-126

4/14/2014 39

Some Basic Compression Methods:
Run-Length Coding

1. Run-length Encoding, or RLE is a technique used to reduce

the size of a repeating string of characters.

2. This repeating string is called a run, typically RLE encodes a

run of symbols into two bytes , a count and a symbol.

3. RLE can compress any type of data

4. RLE cannot achieve high compression ratios compared to

other compression methods

4/14/2014 40

Some Basic Compression Methods:
Run-Length Coding

5. It is easy to implement and is quick to execute.

6. Run-length encoding is supported by most bitmap file formats

such as TIFF, BMP and PCX

4/14/2014 41

Some Basic Compression Methods:
Run-Length Coding

WWWWWWWWWWWWBWWWWWWWWWWWWBBBW
WWWWWWWWWWWWWWWWWWWWWWWBWWWW
WWWWWWWWWW

RLE coding:

 12W1B12W3B24W1B14W

4/14/2014 42

Some Basic Compression Methods:
Symbol-Based Coding

 In symbol- or token-based coding, an image is
represented as a collection of frequently occurring

 sub-images, called symbols.

 Each symbol is stored in a symbol dictionary

 Image is coded as a set of triplets

 {(x1,y1,t1), (x2, y2, t2), …}

4/14/2014 43

Some Basic Compression Methods:
Symbol-Based Coding

4/14/2014 44

Some Basic Compression Methods:
Bit-Plane Coding

 An m-bit gray scale image can be converted into m binary

images by bit-plane slicing. These individual images are
then encoded using run-length coding.

 Code the bitplanes separately, using RLE (flatten each
plane row-wise into a 1D array), Golomb coding, or
any other lossless compression technique.

• Let I be an image where every pixel value is n-bit long

• Express every pixel in binary using n bits

• Form n binary matrices (called bitplanes), where the i-th

matrix consists of the i-th bits of the pixels of I.

4/14/2014 45

Some Basic Compression Methods:
Bit-Plane Coding

Example: Let I be the following 2x2 image where the pixels

are 3 bits long
 101 110
 111 011

The corresponding 3 bitplanes are:
 1 1 0 1 1 0
 1 0 1 1 1 1

4/14/2014 46

However, a small difference in the gray level of

adjacent pixels can cause a disruption of the run of

zeroes or ones.

Eg: Let us say one pixel has a gray level of 127 and the

next pixel has a gray level of 128.

In binary: 127 = 01111111

& 128 = 10000000

Therefore a small change in gray level has decreased

the run-lengths in all the bit-planes!

4/14/2014 47

1. Gray coded images are free of this problem which affects

images which are in binary format.

2. In gray code the representation of adjacent gray levels

will differ only in one bit (unlike binary format where all

the bits can change.

GRAY CODE

4/14/2014 48

Let gm-1…….g1g0 represent the gray code

representation of a binary number.

Then:

11

1 20









mm

iii

ag

miaag

In gray code:

127 = 01000000

128 = 11000000

4/14/2014 49

Gray Coding

 To convert a binary number b1b2b3..bn-1bn to its
corresponding binary reflected Gray code.

 Start at the right with the digit bn. If the bn-1 is 1,

replace bn by 1-bn ; otherwise, leave it unchanged. Then
proceed to bn-1 .

 Continue up to the first digit b1, which is kept the same

since it is assumed to be a b0 =0.

 The resulting number is the reflected binary Gray code.

4/14/2014 50

Examples: Gray Coding

 Dec Gray Binary

 0 000 000
 1 001 001
 2 011 010
 3 010 011
 4 110 100
 5 111 101
 6 101 110
 7 100 111

4/14/2014 51

4/14/2014 52

4/14/2014 53

Decoding a gray coded image

The MSB is retained as such,i.e.,

11

1 20









mm

iii

ga

miaga

4/14/2014 54

Differential Pulse Code Modulation (DPCM)

► Example:

 AAABBCDDDD encoded as A0001123333

► Change reference symbol if delta becomes too large

► Works better than RLE for many digital images

4/14/2014 55

Block Transform Coding

4/14/2014 56

Block Transform Coding

1 1

0 0

Consider a subimage of size whose forward, discrete

transform (,) can be expressed in terms of the relation

 (,) (,) (, , ,)

for , 0,1,2,..., -1.

n n

x y

n n

T u v

T u v g x y r x y u v

u v n

 

 









4/14/2014 57

Block Transform Coding

1 1

0 0

Given (,), (,) similarly can be obtained using the

generalized inverse discrete transform

 (,) (,) (, , ,)

for , 0,1,2,..., -1.

n n

u v

T u v g x y

g x y T u v s x y u v

x y n

 

 







4/14/2014 58

Image transform

► Two main types:

 -orthogonal transform:

 e.g. Walsh-Hdamard transform, DCT

 -subband transform:

 e.g. Wavelet transform

4/14/2014 59

Orthogonal transform

►Orthogonal matrix W

  C=W．D

 Reducing redundancy

 Isolating frequencies

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

w w w w

w w w w

w w w w

w w w w

 
 
 
 
 
 

1

2

3

4

c

c

c

c

 
 
  
 
 
 

1

2

3

4

d

d

d

d

 
 
 
 
 
 

4/14/2014 60

Block Transform Coding
Walsh-Hadamard transform (WHT)

4/14/2014 61

Block Transform Coding
Discrete Cosine Transform (DCT)

(, , ,) (, , ,)

(2 1) (2 1)
() () cos cos

2 2

1
 for / 0

where (/)
2

 for / 1, 2,..., -1

r x y u v s x y u v

x u y v
u v

n n

u v
n

u v

u v n
n

 
 





    
    

   





 





4/14/2014 62

Example

4/14/2014 63

In each case, 50% of the resulting coefficients were truncated and taking the
inverse transform of the truncated coefficients arrays.

RMSE = 2.32 RMSE = 1.78 RMSE = 1.13

4/14/2014 64

Subimage Size Selection

4/14/2014 65

Subimage Size Selection

4/14/2014 66

Bit Allocation

 The overall process of truncating, quantizing, and coding
the coefficients of a transformed subimage is commonly

called bit allocation

Zonal coding
 The retained coefficients are selected on the basis of

maximum variance

Threshold coding
 The retained coefficients are selected on the basis of

maximum magnitude

4/14/2014 67
RMSE = 6.5

RMSE = 4.5

4/14/2014 68

Threshold Coding

   

(,)
(,)

(,)

(0,0) 0,1 ... 0, 1

(1,0)

....

(1,0) (1, 1)

T u v
T u v round

Z u v

Z Z Z n

Z
Z

Z n Z n n

  
  

 

  
 
 
 
 

   

4/14/2014 69

Threshold Coding

4/14/2014 70

Threshold Coding

12:1

30:1

19:1

85:1

49:1
182:1

4/14/2014 71

Fact about JPEG Compression

► JPEG stands for Joint Photographic Experts Group

► Used on 24-bit color files.

► Works well on photographic images.

► Although it is a lossy compression technique, it yields an
excellent quality image with high compression rates.

4/14/2014 72

Fact about JPEG Compression

► It defines three different coding systems:

 1. a lossy baseline coding system, adequate for most
compression applications

 2. an extended coding system for greater compression,
higher precision, or progressive reconstruction applications

 3. A lossless independent coding system for reversible
compression

4/14/2014 73

Steps in JPEG Compression

1. (Optionally) If the color is represented in RGB mode, translate it
to YUV.

2. Divide the file into 8 X 8 blocks.

3. Transform the pixel information from the spatial domain to the
frequency domain with the Discrete Cosine Transform.

4. Quantize the resulting values by dividing each coefficient by an
integer value and rounding off to the nearest integer.

5. Look at the resulting coefficients in a zigzag order. Do a run-
length encoding of the coefficients ordered in this manner.
Follow by Huffman coding.

4/14/2014 74

Step 1a: Converting RGB to YUV

► YUV color mode stores color in terms of its luminance
(brightness) and chrominance (hue).

► The human eye is less sensitive to chrominance than
luminance.

► YUV is not required for JPEG compression, but it gives a
better compression rate.

4/14/2014 75

RGB vs. YUV

► It’s simple arithmetic to convert RGB to YUV. The formula
is based on the relative contributions that red, green, and
blue make to the luminance and chrominance factors.

► There are several different formulas in use depending on
the target monitor.

For example:

Y = 0.299 * R + 0.587 * G +0.114 * B

U = -0.1687 * R – 0.3313* G + 0.5 * B +128

V = 0.5 * R – 0.4187 * G – 0.813 * B + 128

4/14/2014 76

Step 1b: Downsampling

► The chrominance information can (optionally) be
downsampled.

► The notation 4:1:1 means that for each block of four
pixels, you have 4 samples of luminance information (Y),
and 1 each of the two chrominance components (U and V).

Y Y

Y Y

U, V

4/14/2014 77

Step 2: Divide into 8 X 8 blocks

► Note that with YUV color, you have 16 pixels of information
in each block for the Y component (though only 8 in each
direction for the U and V components).

► If the file doesn’t divide evenly into 8 X 8 blocks, extra
pixels are added to the end and discarded after the
compression.

► The values are shifted “left” by subtracting 128.

4/14/2014 78

Discrete Cosine Transform

► The DCT transforms the data from the spatial domain
to the frequency domain.

► The spatial domain shows the amplitude of the color as
you move through space

► The frequency domain shows how quickly the
amplitude of the color is changing from one pixel to the
next in an image file.

4/14/2014 79

Step 3: DCT

► The frequency domain is a better representation for the
data because it makes it possible for you to separate out –
and throw away – information that isn’t very important to
human perception.

► The human eye is not very sensitive to high frequency
changes – especially in photographic images, so the high
frequency data can, to some extent, be discarded.

4/14/2014 80

Step 3: DCT

► The color amplitude information can be thought of as a
wave (in two dimensions).

► You’re decomposing the wave into its component
frequencies.

► For the 8 X 8 matrix of color data, you’re getting an 8 X 8
matrix of coefficients for the frequency components.

4/14/2014 81

Step 4: Quantize the Coefficients
Computed by the DCT

► The DCT is lossless in that the reverse DCT will give you
back exactly your initial information (ignoring the rounding
error that results from using floating point numbers.)

► The values from the DCT are initially floating-point.

► They are changed to integers by quantization.

4/14/2014 82

Step 4: Quantization

► Quantization involves dividing each coefficient by an
integer between 1 and 255 and rounding off.

► The quantization table is chosen to reduce the precision of
each coefficient to no more than necessary.

► The quantization table is carried along with the
compressed file.

4/14/2014 83

Step 5: Arrange in “zigzag” order

► This is done so that the coefficients are in order of
increasing frequency.

► The higher frequency coefficients are more likely to be 0
after quantization.

► This improves the compression of run-length encoding.

► Do run-length encoding and Huffman coding.

4/14/2014 84

4/14/2014 85

4/14/2014 86

4/14/2014 87

4/14/2014 88

Assuming the DC coefficient of the transformed and quantized
subimage to its immediate left was -17.

The resulting of DPCM difference is [-26 – (-17)] = -9.

4/14/2014 89

4/14/2014 90

4/14/2014 91

4/14/2014 92

4/14/2014 93

4/14/2014 94

4/14/2014 95

JPEG at 0.125 bpp (enlarged)

C. Christopoulos, A. Skodras, T. Ebrahimi, JPEG2000 (online tutorial)

4/14/2014 96

JPEG2000 at 0.125 bpp

C. Christopoulos, A. Skodras, T. Ebrahimi, JPEG2000 (online tutorial)

