# Real-Time Detection and Tracking for Augmented Reality on Mobile Phones

D. Wagner, A. Mulloni and D. Schmalstieg

Presented by Yuansi Chen and Lingqi Yan

### Outline

- 1. Motivation and Related Work
- 2. Modified Features Detectors
- 3. Performance and Analysis

## Motivation



#### Motivation

- Limited computational resources (speed and memory) on Mobile devices
- Natural feature tracking infeasible: SIFT and Ferns

## Goal

- Enough speed improvement for real-time AR processing
- with Limited memory
- without losing too much quality
- on real phones (<33ms/frame)</li>

#### Related Works

- General Feature Detectors for PCs (slow)
- Outsource the tracking task to PCs via wifi.
   (AR-PDA project: 10s per frame is still slow)
- Marker tracking: restricted applications



## **Detection and Tracking Routine**



# Scale Invariant Feature Transform (SIFT)



#### **Ferns**

- Feature detection as classification
- Binary Feature F(p)
- C = argmax P(Ci|F)
- Instead of storing full joint distribution, add independence:

$$P(F|C) = \Pi P(F_S|C)$$

#### **FAST Corner Detector**

#### Ref from:

<Machine learning for high-speed corner detection>
By Edward Rosten and Tom Drummond, University of Cambridge

- Features from accelerated segment test (FAST)
- A corner detector many times faster than DoG but not very robust to the presence of noise
- Based on intensity level tests





## **FAST Corner Detector**



## SIFT to PhonySIFT

#### Main Modifications:

- Uses FAST corner detector to all scaled images to detect feature points instead of scale-crossing DoG
- Only 3x3 subregions, 4bins each, creates 36-d vector
- Using a Spill tree

## Ferns to PhonyFerns

#### Main Modifications

- Uses FAST detector to increase detection speed
- Reduces each ferns size
- Uses 8-bit size to store probability instead of using 4 bytes float point value
- modifying the training scheme to use all FAST responses within the 8-neighborhood

## **Outliner Removal**

Orientation Estimation

 Homography verification based on RANSAC/ PROSAC

## PatchTracker

#### Ideas:

- 1. Both the scene and the camera pose change only slightly between two successive frames
- New feature positions can be successfully predicted by old one with defined range search

# **Combined Tracking**



## Performance & Analysis

- Platform: Asus P552W (Cellphone)
  - 624Mhz CPU
  - 240x320 screen resolution
  - No float point unit
  - No 3D acceleration
- Platform:Dell Notebook (PC)
  - 2.5Ghz, limited to use single core
  - With float point support

# Speed



# Robustness over different objects



Fig. 5. The seven test sets (a)-(g): book cover, advertisement, cars movie poster, printed map, panorama picture, photo, and Vienna satellite image.

## Robustness over different objects



# **Typical Situations of Switch**



## **Typical Situations of Switch**

• (Show paper Figure 7)

## Ferns vs SIFT vs PatchTracker



## **Detailed Speed Analysis**

#### PhonySIFT:

- Corner Detection(FAST) : ~14%

Feature descriptor and Matching: ~74%

Outlier Removal : ~ 9%

– Pose Refinement : ~ 3 %

#### PhonyFerns:

- Corner detection(FAST) : ~ 22%

Second Octave and Blurring : ~ 17%

Classification : ~ 59%

Outlier Removal : ~ 2%

## Conclusion

- Successfully worked with tracking system on phones
- Better CPU would come out in the future. The choice of the next generation feature is unknown