Lecture 2. Intensity Transformation
and Spatial Filtering



Spatial Domain vs. Transform Domain

Spatial domain

Image plane itself, directly process the intensity values of
the image plane

Transform domain

process the transform coefficients, not directly process the
Intensity values of the image plane
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Spatial Domain Process

g(x,y)=TLT (X, y)])

f (X, Y):Input image

g(X, y):output image

T :an operator on f defined over
a neighborhood of point (X, y)



Origin N\

Spatial Domain Process

Image f

— (x,y)

3 X 3 neighborhood of (x, y)
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Spatial domain

FIGURE 3.1

A3 X3
neighborhood
about a point
(x,y)in an image
in the spatial
domain. The
neighborhood is
moved from pixel
to pixel in the
image to generate
an output image.



Spatial Domain Process

Intensity transformation function
S=T(r)

s =T(r) s =T(r) a b

FIGURE 3.2
| Intensity

| transformation
l functions.

| (a) Contrast-
|

|

stretching
function.

Dark
Dark

I
I
i
| . | (b) Thresholding
k 1o ' k function.

-
Y
~
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Some Basic Intensity Transformation

3L /4

Lf2

Output intensity level, s

L/4
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|

Functions
|
Negative
nth root
Log
nth power
Inverse log

L/4

Lp

Input intensity level, r

3L /4

FIGURE 3.3 Some
basic intensity
transformation
functions. All
curves were
scaled to fit in the
range shown.
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Output intensity level, s

3L /4

Lf2

L/4

Image Negatives

Negative

Log

nth root

nth power

Inverse log

| |

L/4 L2

3L /4

Input intensity level, r

Image negatives
S=L—-1-r
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Example: Image Negatives

ab

FIGURE 3.4

(a) Original digital
mammogram.

(b) Negative
image obtained
using the negative
transformation

in Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)

Small
lesion



Log Transformations

L-1 i
| Log Transformations
Negative
nth root S — C Iog(1+ r)
3L/4 — ]
?j Log
E‘ nth power
g Lph- |
S
L/4 ]
Identity Inverse log
0 ——*f*’”##f#/r// |

0 L/4 Lp 3L /4 L—1

Input intensity level, r
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Example: Log Transformations

ab

FIGURE 3.5

(a) Fourier
spectrum.

(b) Result of
applying the log
transformation in
Eq. (3.2-2) with
c=1.
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Power-Law (Gamma) Transformations

Output intensity level, s

L-1

3L /4

L/2

L/A

_
v.=0.0%
y =0.10

y =020

y = 0.40

y = 0.67

L/A L/2

Input intensity level, r

3L /4

S =cCr’

FIGURE 3.6 Plots
of the equation

s = cr’ for
various values of
v (¢ = 1in all
cases). All curves
were scaled to fit
in the range
shown.
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Example: Gamma Transformations

a b
cd

FIGURE 3.7
(a) Intensity ramp
image. (b) Image
as viewed on a
Original image | Gamma Original image as viewed Si{nulatEd mDnthr
correction on monitor with a gamma of
2.5.(c) Gamma-
corrected image.
(d) Corrected
image as viewed
on the same
monitor. Compare

(d) and (a).

Gamma-corrected image Gamma-corrected image as
viewed on the same monitor
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Example: Gamma Transformations

Cathode ray tube
(CRT) devices have an
Intensity-to-voltage
response that is a
power function, with
exponents varying
from approximately

Original image | Gamma Original image as viewed
correction on monitor 1 . 8 to 2 . 5

Gamma-corrected image Gamma-corrected image as
viewed on the same monitor

2/6/2014 13
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Transformations

ab
cd

FIGURE 3.8

(a) Magnetic
resonance

image (MRI) of a
fractured human
spine.

(b)-(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ =1and
v = 0.6,04,and
0.3, respectively.

(Original image
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University

Medical Center.) H
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Example: Gamma Transformations

FIGURE 3.9

(a) Aerial image.
(b)—(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ = 1and

v = 3.0, 4.0,and
5.0, respectively.
(Original image
for this example

courtesy of
NASA.)
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Piecewise-Linear Transformations

Contrast Stretching

— Expands the range of intensity levels in an image so that it spans
the full intensity range of the recording medium or display device.

Intensity-level Slicing

— Highlighting a specific range of intensities in an image often is of
Interest.

2/6/2014 16
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ab
cd

FIGURE 3.10
Contrast stretching.
(a) Form of
transformation
function. (b) A
low-contrast image.
(c) Result of
contrast stretching.
(d) Result of
thresholding.
(Original image
courtesy of Dr.
Roger Heady,
Research School of
Biological Sciences,
Australian National
University,
Canberra,
Australia.)
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ab L—-1
FIGURE 3.11 (a) This

Highlight the major
blood vessels and
study the shape of the
flow of the contrast
medium (to detect
blockages, etc.)

]

Measuring the actual
flow of the contrast

medium as a function
FIGURE 3.12 (a) Aortic angiogl ~f time in a series of mation of the type illustrated in Fig.

]z

3.11(a), with the range of inte| | end of the gray scale. (c) Result of
using the transformation in Fig 1Mages lack, so that grays in the area of the 18
blood vessels and Kidneys were p FouT (OTIgT agewourtesy Of Dr. Thomas R. Gest, University of

Michigan Medical School.)



One 8-bit byte
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XX

Bit-plane Slicing

Bit plane 8

(most significant)

A\

Bit plane 1

(least significant)

NNV

FIGURE 3.13
Bit-plane
representation of
an 8-bit image.
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Bit-plane Slicing

% I -I
Ill\‘l!l Itll &t

I@l

ISIE?II

gt -y

abec
de f
g h i
FIGURE 3.14 (a) An 8-bit gray-scale image of size 500 X 1192 pixels. (b) through (i) Bit planes 1 through 8,
with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.



Bit-plane Slicing

FE TN
I-'\ll. ENr=TYIEY

v lll‘-:l Y g 3

I-EE‘?lualZ.H
%5

MO

% n;.rm:auu
. 1—-3¢ ‘-“--

S B NN NIRRT TR A

abc

FIGURE 3.15 Images reconstructed using (a) bit planes 8 and 7; (b) bit planes 8,7, and 6; and (c) bit planes 8,
7,6, and 5. Compare (c) with Fig. 3.14(a).
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Histogram Processing

Histogram Equalization
Histogram Matching
Local Histogram Processing

Using Histogram Statistics for Image Enhancement

2/6/2014
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Histogram Processing

Histogram h(r,)=n,
r is the k" intensity value
n  Is the number of pixels in the image with intensity r,

Normalized histogram p(r,) =—— i

MN
n,: the number of pixels in the image of

size M x N with Intensity r,

2/6/2014 23
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I I I
Histogram of dark image

I I I
Histogram of light image

Histogram of low-contrast image

Histogram of high-contrast image

o LN A b
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Histogram Equalization

The intensity levels in an image may be viewed as
random variables in the interval [0, L-1].

Let p, (r) and p, (s) denote the probability density
function (PDF) of random variables r and s.

p:(r) Ps(s)

— Eq. (3.3-4) —~

L-1

0 L -1 0 L-1

ab

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in
2162014 Eq. (3.3-4) to all intensity levels, r. The resulting intensities, s, have a uniform PDF, 25
independently of the form of the PDF of the #’s.



Histogram Equalization

s=T(r) 0<r<L-1

a. T(r) is astrictly monotonically increasing function
In the interval 0 <r <L-1,
b. 0<T(r)<L-1 for 0<r<L-1. a b

T(r) T(r) FIGURE 3.17

A | (a) Monotonically
increasing

L-1f-———————————- L-1f————————————— ‘ )

, ' function, showing

Single I . =
| how multiple

value, 5 )
T(r) —~ values can map to
Single |

I
|
| a single value.
value, s, [ :
I
I
I
I
I
I
I

S

(b) Strictly
monotonically
increasing
function. This is a
= - ~r  one-to-one

0 Multiple Single L — 1 mapping, both 26
values  value ways.




Histogram Equalization

s=T(r) 0<r<L-1

a. T(r) i1s astrictly monotonically increasing function
In the interval 0<r <L-1,
b. 0<T(r)<L-1 for 0<r<L-1.

T (r) 1s continuous and differentiable.

p,(8)ds = p, (r)ar

2/6/2014 27



Histogram Equalization

s=T(r)=(L-1) p,(w)dw

ds  dT d [
- dEr) § (L_l)EUo p (W

— (L-2)p,(r)

_p.(n)dr p (r) _ p,(r) __ 1
P.(8) = ds %dsj_ %(L_l)pr(r))_ L-1

dr
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Example

Suppose that the (continuous) intensity values
In an image have the PDF

[ 2r
p,(r) =1 (L-1)*’
0, otherwise

forO<r<L-1

\

Find the transformation function for equalizing
the image histogram.

29



Example

() =(L-D)], p, (w)dw
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Histogram Equalization

Continuous case:

s=T(r)=(L-D)f p,(w)dw

Discrete values:

s =T(5) = (L= p,(r)

31



Example: Histogram Equalization

Suppose that a 3-bit image (L=8) of size 64 x 64 pixels (MN = 4096)
has the intensity distribution shown in following table.

Get the histogram equalization transformation function and give the
p.(s,) for each s,.

I n; p.(ry) = n,/MN
ro =0 790 0.19
r =1 1023 0.25
r, = 2 850 0.21
ry = 3 656 0.16
ry =4 329 0.08
rs =5 245 0.06
re = 6 122 0.03
ry =17 81 0.02




Example: Histogram Equalization

I n, pr(ry) = n,/MN
0
S, =T() =7 p.(r;) =7x0.19=1.33 —1
Jl=0
s, =T(r)=7> p,(r;)=7x(0.19+0.25)=3.08 — 3
j=0
S, =455 —5 S, =567 —>6
S, =6.23 —>6 S: =6.65 —7
Sg =680 — 7 s,=7.00 =7
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Example: Histogram Equalization

pr(rk) Sk

A A
25+ e .
204 | ® -
15+ o 24 |

>T | 4.2 - T() |
10 + | . 2.8 T !

| . > i

01 2 3 456 7 01 2 3 45 6 7

abc

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original
histogram. (b) Transformation function. (¢) Equalized histogram.
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-

AT FIGURE 3.20 Left column: images from Flg 3.16. Center column: corresponding histogram-
equalized images. Right column: histograms of the images in the center column.

35



192

128

64
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FIGURE 3.21
Transformation
functions for
histogram
equalization.
Transformations
(1) through (4)
were obtained from
the histograms of
the images (from
top to bottom) in
the left column of
Fig. 3.20 using
Eq. (3.3-8).

36
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Question

Is histogram equalization always good?

NO



Histogram Matching

Histogram matching (histogram specification)
— generate a processed image that has a specified histogram

Let p,.(r) and p, (z) denote the continous probability
density functions of the variables r and z. p,(z) is the
specified probability density function.

Let s be the random variable with the probability

s=T(r)=(L-1) p,(Wydw
Define a random variable z with the probability

G(2) = (LD p,()dt =

2/6/2014 38



Histogram Matching

s=T(r)=(L-D] p.(w)dw

G(2) =(L-D)f p,(®dt=s

z=G(s)=G[T(r)]



Histogram Matching: Procedure

Obtain p,(r) from the input image and then obtain the values of s
r
s=(L-1)]; p.(w)dw
Use the specified PDF and obtain the transformation function G(z)
YA
G(2)=(L-D)] p,(t)dt=s
Mapping from s to z

z=G(s)

2/6/2014
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Histogram Matching: Example

Assuming continuous intensity values, suppose that an image has

the intensity PDF

-

p, (r) =-

.

2r

(L 1)2, forO<r<L-1

0, otherwise

Find the transformation function that will produce an image
whose intensity PDF is

-

3z°

p,(z) =1

.

2/6/2014

LD for0<z<(L-1)

0, otherwise

41



Histogram Matching: Example

Find the histogram equalization transformation for the input image

2

s=T(r)=(L-1)[ p,(w)dw=(L- 1)j 7 1) w=Lr_1

Find the histogram equalization transformation for the specified histogram

23

0 (L— 1) T(L-1?

G(@) = (L-D) p, M)t = (L-D)[ —

The transformation function
2

r_l:| :[(L_l)rz]UB

z=[(L-1ys]" {(L—l)z ;

2/6/2014 42




Histogram Matching: Discrete Cases

Obtain p,(r;) from the input image and then obtain the values of
S, round the value to the integer range [0, L-1].

5, =T(0) = (-3 p. ()= =5,

Use the specified PDF and obtain the transformation function
G(zy), round the value to the integer range [0, L-1].

6(z)=(L-DY. p,(2) =5

Mapping from s, to z,

:G_l(sk)

2/6/2014
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Example: Histogram Matching

Suppose that a 3-bit image (L=8) of size 64 x 64 pixels (MN = 4096)
has the intensity distribution shown in the following table (on the
left). Get the histogram transformation function and make the output
Image with the specified histogram, listed in the table on the right.

I n, p(ry) = ny/MN Specified
Zq Pz(zq)
ro = 0 790 0.19
n=1 1023 0.25 S o
r, =2 850 0.21 =2 0.00
=3 656 0.16 =3 015
ry, =4 329 0.08 =4 020
rs=5 245 0.06 25 =5 0.30
rs = 6 122 0.03 Z6 = 6 0.20
=1 81 0.02 27 =7 0.15

2/6/2014
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Example: Histogram Matching

Obtain the scaled histogram-equalized values,
s, =1s,=35,=5S5,=6,5, =7,
Ss=1,8=1,8=1.

Compute all the values of the transformation function G,

G(z,)=7>_p,(z;)=0.00 — 0
j=0

G(z,)=000 —>O0 G(z,)=0.00 >0
1 2
G(z,)=1.05 —1 G(z,)=2.45 —> 2 o e
L “G(yY=455 —5 G(z,)=5.95 —6 2= 0 0.00

rn=0 790 0.19 7 =1 0.00
n=1 1023 0.25 o
1o, w0(Z) (.00 = / o : 8:?2
r=3 656 0.16 o
re=4 3;9 0.08 o f 8‘28
rs=>5 245 0.06 e 090
re =06 122 0.03 o s
r,=17 81 0.02 27 =17 0.15
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Example: Histogram Matching

pr(rk)

30 +
25
20
A5 +
10 1+
05

p.(zg)

L O Y

I:_"J —_————————

u-l —_—_————

~ -

L

I"'Zq

ab
cd

FIGURE 3.22

(a) Histogram of a
3-bit image. (b)
Specified
histogram.

(c) Transformation
function obtained
from the specified
histogram.

(d) Result of
performing
histogram
specification.
Compare

(b) and (d).
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Example: Histogram Matching

Obtain the scaled histogram-equalized values,
s, =1s,=35,=5S5,=6,5, =7,
Ss=1,8=1,5=1.

Compute all the values of the transformation function G,

G(z,)=7>_p,(z;)=0.00 — 0
j=0

G(z)=0.00 0 G(z,)=0.00 -0
G(z,)=1.05 —1 s, G(z,)=245 >2 s;
G(z;)=455 —>5 S» G(z,)=595 =6 s;
G(z,)=700 —7 S; S5 Sg Sy

47



2/6/2014

Example: Histogram Matching

S, =15, =3,S,=5,5,=6,5, =7,
Ss=1/1,5=1,5=1.

I Sk — Zq
0 1 — 3
1 3 — 4
2 S — 5
3 6 — 6
4 7 — 7

48
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Example: Histogram Matching
o —Z,
0—>3
1->4
2—>5
3—6
4 —(
57
06—/
[ —> 7

49
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Example: Histogram Matching

pr(rk)

30 +
25
20
A5 +
10 1+
05

p.(zg)

L O Y

I:_"J —_————————

u-l —_—_————

~ -

L

I"'Zq

ab
cd

FIGURE 3.22

(a) Histogram of a
3-bit image. (b)
Specified
histogram.

(c) Transformation
function obtained
from the specified
histogram.

(d) Result of
performing
histogram
specification.
Compare

(b) and (d).
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Example: Histogram Matching

Number of pixels ( X 104

ab

FIGURE 3.23
(a) Image of the
Mars moon

Phobos taken by
NASA’s Mars
Global Surveyor.
(b) Histogram.
— (Original image
courtesy of
NASA))

64 128 192

Intensity

255
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255

192

128

Output intensity

(=)
=

Number of pixels ( X 10%)

64 128 192

Input intensity

| | |1 ol
64 128 192 255
Intensity

Example: Histogram Matching

ab
C

FIGURE 3.24

(a) Transformation
function for
histogram
equalization.

(b) Histogram-
equalized image
(note the washed-
out appearance).
(c) Histogram

of (b).
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I~ o
N o=
—
|

a c
b
d

Number of pixels ( X 10%)
(9]
h
=
|
|

- FIGURE 3.25
%0 64 128 192 255 (El) Spnecified
Intensity . p
255 | | | , hlStﬂgI'am.
o 12l s (b) Transformations.
i 0> (c) Enhanced image
= 128 — K — * *
H Ao using mappings
S o T from curve (2).
plommmiozeecl L | (d) Histogram of (c).
Input intensity
700 | | |
ﬁ 5.25 — —
% 3.50 —
-;g 1.75 — =
2/6/2014 2 0 | | | 53
0 64 128 192 255

Intensity
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Local Histogram Processing

Define a neighborhood and move its center from pixel to
pixel

At each location, the histogram of the points in the
neighborhood is computed. Either histogram equalization or
histogram specification transformation function is obtained

Map the intensity of the pixel centered in the neighborhood

Move to the next location and repeat the procedure

54



Local Histogram Processing: Example

abec

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local
histogram equalization applied to (a), using a neighborhood of size 3 X 3.
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Using Histogram Statistics for Image

Enhancement

Average Intensity 1 M-IN-L
m = p(r,) =—— F(xy)

Z P(1) =n 22

un(r)=Z(n —m)"p(r)

Variance L-1 1 M=IN-1

o =Uy(r) =2 (5 =m)*p(r) =g 2 2 [F e y)-m]

y=0
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Using Histogram Statistics for Image
Enhancement

Local average intensity

-1
m, =) rp, (1)
1=0
s,, denotes a neighborhood

| ocal variance
L-1

o, =2 (r—mg )*p, (r)

1=0

57



Using Histogram Statistics for Image
Enhancement: Example

ECT(x,y), itm, <kmg andkog <o, <k,o4

g(x, y)={

f(x,y), otherwise

m, :global mean; o :global standard deviation
k,=0.4; k =0.02; k,=04; E=4

abc

FIGURE 3.27 (a) SEM image of a tungsten filament magnified approximately 130X.
(b) Result of global histogram equalization. (¢) Image enhanced using local histogram
statistics. (Original image courtesy of Mr. Michael Shaffer, Department of Geological
Sciences, University of Oregon, Eugene.)
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Spatial Filtering

A spatial filter consists of (a) a neighborhood, and (b) a
predefined operation

Linear spatial filtering of an image of size MxN with a filter
of size mxn is given by the expression

g(x,y) = Za: > w(s,t) f(x+s,y+t)

s=—at=-b

59
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image origin

Spatia

Filtering

— sy

ZAEEN
}
/
/
& Filter uasl/
M~
1
Image pixels —/

Image

-

w(0,0)

w(0,1)

w(l,=1) | w(1,0)

flx=1,y-1)

flx=1Ly+1)

w(l,1)

Filter coefficients

fley+1)

fx+Ly—-1)| fix+Ly)

flx+lLy+1)

Pixels of image
section under filter
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Spatial Correlation

The correlation of a filter w(x, y) of size mxn
with an image f (X, y), denoted as w(X, y)*f (X, y)

w(x, y) ¥ f (X, y) = Z Zw(s ) f (X+S,y+t)

S=—at=

61
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Spatial Convolution

The convolution of a filter w(x, y) of size mxn
with an image f (X, y), denoted as w(Xx, y)xf (X, y)

w(x, y)* f (X, y) = ZZW(st)f(x s,y —t)

S=—at=

62



Ve Origin

2/6/201

0
0
0
0
0

]
]

0
]

J(x,y)
()
()
()
0
()

(a)

=

oo th b

O =

FIGURE 3.30
Correlation
(middle row) and
convolution (last
row) of a 2-D
filter with a 2-D
discrete, unit
impulse. The Os
are shown in gray
to simplify visual
analysis.
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Smoothing Spatial Filters

Smoothing filters are used for blurring and for noise
reduction

Blurring is used in removal of small details and bridging of
small gaps in lines or curves

Smoothing spatial filters include linear filters and nonlinear
filters.

64



Spatial Smoothing Linear Filters

The general implementation for filtering an M x N image
with a weighted averaging filter of size mxn is given

Za: Zblw(s,t) f(x+s,y+t)
g(x,y) ===

Z Z w(s, t)

S=—at=

where m=2a+1 n=2b+1.
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2

(]

3

Two Smoothing Averaging Filter Masks

ab

FIGURE 3.32 Two
3 X 3 smoothing
(averaging) filter
masks. The
constant multipli-
er in front of each
mask is equal to 1
divided by the
sum of the values
of its coefficients,
as is required to
compute an
average.
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FIGURE 3.33 (a) Original image, of size 500 x 500 pixels. (b)—(f) Results of smoothing
with square averaging filter masks of szes m = 3,5,9,15, and 35, respectively. The black
squares at the top are of sizes 3, 5,9, 15,25, 35, 45, and 55 pixels, respectively: their borders
are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels
wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25

pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100%
black in increments of 20%. The background of the image is lﬂ%% black. The noisy
rectangles are of size 50 X 120 pixels.
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Example: Gross Representation of Objects

abc

FIGURE 3.34 (a) Image of size 528 X 485 pixels from the Hubble Space Telescope. (b) Image filtered with a
15 X 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)
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Order-statistic (Nonlinear) Filters

— Nonlinear

— Based on ordering (ranking) the pixels contained in the
filter mask

— Replacing the value of the center pixel with the value
determined by the ranking result

E.g., median filter, max filter, min filter

69



Example: Use of Median Filtering for Noise Reduction

abc

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noize reduction with
a 3 ¥ 3 averaging mask. (c) Noise reduction with a 3 * 3 median filter. (Original image courtesy of Mr.
Joseph E. Pascente, Lixi, Inc.)
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Sharpening Spatial Filters

Foundation

Laplacian Operator
Unsharp Masking and Highboost Filtering

Using First-Order Derivatives for Nonlinear Image
Sharpening — The Gradient
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Sharpening Spatial Filters: Foundation

The first-order derivative of a one-dimensional function f(x)
IS the difference

of
—=f(x+D) - F()

The second-order derivative of f(x) as the difference

o°f _ F(x+1)+ f(x=1) =2 (x)

X2
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FIGURE 3.36
Illustration of the
first and second
derivatives of a
1-D digital
function
representing a
section of a
horizontal
intensity profile
from an image. In
(a) and (c) data
points are joined
by dashed lines as
a visualization aid.
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Sharpening Spatial Filters: Laplace Operator

The second-order isotropic derivative operator is the
Laplacian for a function (image) f(x,y)

2 2
Vi _9 Z +a I
| oX° oy
axz = f(x+Ly)+ f(x-Ly)-2f(xy)

0"t =f(x,y+D)+ (X, y=-1)-21(x,y)

=

Vif = f(x+Ly)+f(x=Ly)+f(x,y+1)+ f(x,y-1)

-41(X,y)
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Sharpening Spatial Filters:

_aplace Operator

0 1 0 1 1 1
1 —4 1 1 -8 1
0 1 0 1 1 1
0 ~1 0 -1 ~1 —1
~1 4 ~1 ~1 8 ~1
0 ~1 0 ~1 ~1 1

ab
cd

FIGURE 3.37

(a) Filter mask used
to implement

Eq. (3.6-6).

(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal terms.

(c) and (d) Two
other implementa-
tions of the
Laplacian found
frequently in
practice.
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Sharpening Spatial Filters: Laplace Operator

Image sharpening in the way of using the Laplacian:

g(x,y) = f(x,y)+c| V2 (x,y) ]
where,
f (X, y) Is Input image,
g(X,y) Is sharpenend images,
c=-1if V*f(x,y) corresponding to Fig. 3.37(a) or (b)
and c =1 if either of the other two filters Is used.
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a
b c
de

FIGURE 3.38

(a) Blurred image
of the North Pole
of the moon.

(b) Laplacian
without scaling.
(c) Laplacian with
scaling. (d) Image
sharpened using
the mask in Fig.
3.37(a). (e) Result
of using the mask
in Fig. 3.37(b).
(Original image
courtesy of
NASA.)
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Unsharp Masking and Highboost Filtering

Unsharp masking

Sharpen images consists of subtracting an unsharp (smoothed)
version of an image from the original image

e.g., printing and publishing industry
Steps
1. Blur the original image

2. Subtract the blurred image from the original

3. Add the mask to the original
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Unsharp Masking and Highboost Filtering

Let f(x,Yy) denote the blurred image, unsharp masking is

gmask (X’ y) — f (X’ y) _?(X1 y)
Then add a weighted portion of the mask back to the original
g(x,y)=T(X,¥)+k* 0, (X,y) k20

when k > 1, the process Is referred to as highboost filtering.

2/6/2014 79



2/6/2014

/Original signal

/f ~
Blurred signal
-

Unsharp mask

/\

N/

Sharpened signal

Unsharp Masking: Demo

o o

FIGURE 3.39 1-D
illustration of the
mechanics of
unsharp masking.
(a) Original
signal. (b) Blurred
signal with
original shown
dashed for refere-
nce. (c) Unsharp
mask. (d) Sharp-
ened signal,
obtained by
adding (c) to (a).
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Unsharp Masking and Highboost Filtering: Example

DIP-XE

2/6/2014

Lo oW

c

FIGURE 3.40

(a) Original
image.

(b) Result of
blurring with a
Gaussian filter.
(c) Unsharp
mask. (d) Result
of using unsharp
masking.

(e) Result of
using highboost
filtering.



Image Sharpening based on First-Order Derivatives

For function f (x, y), the gradient of f at coordinates (x, y)
IS defined as

s

B 9% | | OX
Vf:grad(f)=_gy__ of
| Oy

The magnitude of vector Vf, denoted as M (X, y)

Gradient Image M (X, y) — mag(vf) — \/gx2 n gyz
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Image Sharpening based on First-Order Derivatives

The magnitude of vector Vf, denoted as M (X, y)
M (x, y) = mag(Vf) =/g,> +9,’

M y)~ g, [+]9,|

MX,y) =25 — 25 | +] 25 — 2
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Image Sharpening based on First-Order Derivatives

Roberts Cross-gradient Operators
M(X,y) ~ 2y — 25 |+ 23 — 2, |

Sobel Operators
M(X,y) ~| (Z7 + 224 + 29) - (Zl +22, + 23) |

£y | Lo | Z3 +|(z,+22,+2,)— (2, + 22, + 2,) |
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Image Sharpening

2/6/2014

21

22

23

T4 <5 <6

27 5 Zy
-1 0 0 -1
0 1 1 0
-1 -2 -1 —1 0
0 0 0 -2 0
1 2 1 -1 0

pased on First-Order Derivatives

a
e
de

FIGURE 3.41

A 3 X 3region of
an image (the zs
are intensity
values).

(b)-(c) Roberts
cross gradient
operators.
(d)-(e) Sobel
operators. All the
mask coefficients
sum to zero, as
expected of a
derivative
operator.

85



Example

ab

FIGURE 3.42

(a) Optical image
of contact lens
(note defects on
the boundary at 4
and 5 o’clock).
(b) Sobel
gradient.
(Original image
courtesy of Pete
Sites, Perceptics
Corporation.)




Example:

Combining
Spatial
Enhancement
Methods

Goal:

Enhance the
Image by
sharpening it
and by bringing
out more of the
skeletal detall

2/6/2014

ab
cd

FIGURE 3.43

(a) Image of
whole body bone
scan.

(b) Laplacian of
(a).(c) Sharpened
image obtained by
adding (a) and (b).
(d) Sobel gradient
of (a).
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Example:

Combining
Spatial
Enhancement
Methods

Goal:

Enhance the
Image by
sharpening it
and by bringing
out more of the
skeletal detall

2/6/2014

e f
g h

FIGURE 3.43
(Continued)

(e) Sobel image
smoothed with a
5 X 5 averaging
filter. (f) Mask
image formed by
the product of (c)
and (e).

(g) Sharpened
image obtained
by the sum of (a)
and (f). (h) Final
result obtained by
applying a power-
law transformation
to (g). Compare
(¢) and (h) with
(a). (Original
image courtesy of
G.E. Medical
Systems.)
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