
 Filtering in the Frequency Domain 
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Outline 

► Fourier Transform 
 

► Filtering in Fourier Transform Domain 
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Fourier Series and Fourier Transform: History 

► Jean Baptiste Joseph Fourier, French mathematician and physicist 

(03/21/1768-05/16/1830)  http://en.wikipedia.org/wiki/Joseph_Fourier  

Orphaned: at nine 

Egyptian expedition 
with Napoleon I: 
1798 
Governor of Lower 
Egypt 

Permanent 
Secretary of the 
French Academy of 
Sciences: 1822 

Théorie analytique 
de la chaleur : 
1822 
 
(The Analytic 
Theory of Heat) 

http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/w/index.php?title=Th%C3%A9orie_analytique_de_la_chaleur&action=edit
http://en.wikipedia.org/w/index.php?title=Th%C3%A9orie_analytique_de_la_chaleur&action=edit
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Fourier Series and Fourier Transform: History 

► Fourier Series 
    Any periodic function can be expressed as the sum of sines 

and /or cosines of different frequencies, each multiplied by 
a different coefficients 

 
► Fourier Transform 
    Any function that is not periodic can be expressed as the 

integral of  sines and /or cosines multiplied by a weighing 
function 

 



2/20/2014 5 

Fourier Series: Example 
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Preliminary Concepts 

1,  a complex number
             
the conjugate 
             * -

j
C R jI

C R jI

= −
= +

=

2 2| |  and arctan( / )
                | | (cos sin )
Using Euler's formula,
                | |  j

C R I I R
C C j

C C e θ

θ
θ θ

= + =
= +

=
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Fourier Series 

2

A function ( ) of a continuous variable  that is periodic
with period, , can be expressed as the sum of sines and 
cosines multiplied by appropriate coefficients

                  ( )
nj t

T
n

n

f t t
T

f t c e
π∞

=−∞

= ∑

2/2

/2

where

1         ( )        for 0, 1, 2,...   
nT j t

T
n T

c f t e dt n
T

π
−

−
= = ± ±∫
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Impulses and the Sifting Property (1) 

A   of a continuous variable  located 
at =0, denoted ( ), defined as

      if 0
                 ( )

0       if 0
and is constrained also to satisfy the identity

                 (

unit impulse t
t t

t
t

t

δ

δ

δ

∞ =
=  ≠

) 1t dt
∞

−∞
=∫

The  

                 ( ) ( ) (0)

sifting property

f t t dt fδ
∞

−∞
=∫

0( ) ( )f t t t dtδ
∞

−∞
− =∫ 0( )f t



2/20/2014 9 

Impulses and the Sifting Property (2) 
A   of a discrete variable  located 
at =0, denoted ( ), defined as

1       if 0
                 ( )

0       if 0
and is constrained also to satisfy the identity

                 (

unit impulse x
x x

x
x

x

x

δ

δ

δ

=
=  ≠

) 1
x

∞

=−∞

=∑
The  

           ( ) ( ) (0)
x

sifting property

f x x fδ
∞

=−∞

=∑
0 0( ) ( ) ( )

x
f x x x f xδ

∞

=−∞

− =∑
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Impulses and the Sifting Property (3) 

  ( ),

        ( ) ( )

T

T
n

impulse train s t

s t t n Tδ

∆

∞

∆
=−∞

= − ∆∑
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Fourier Transform: One Continuous Variable 

2

The   of a continous function ( )

         ( ) { ( )} ( ) j t

Fourier Transform f t

F f t f t e dtπµµ
∞ −

−∞
= ℑ = ∫

1 2

The    of ( )

      ( ) { ( )} ( ) j t

Inverse Fourier Transform F

f t F F e dπµ

µ

µ µ µ
∞−

−∞
= ℑ = ∫
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Fourier Transform: One Continuous Variable 

/22 2

/2

/22

/2

( ) ( )

2 2
sin( )

( )

Wj t j t

W

Wj t j W j W

W

F f t e dt Ae dt

A Ae e e
j j W

WAW
W

πµ πµ

πµ πµ πµ

µ

πµ π
πµ

πµ

∞ − −

−∞ −

− −

−

= =

−    = = −   

=

∫ ∫
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Fourier Transform: Impulses 

2

2 0

The Fourier transform of a unit impulse located at the origin:

                  ( ) ( )

                          
                           =1

j t

j

F t e dt

e

πµ

πµ

µ δ
∞ −

−∞

−

=

=

∫

0

0

2
0

2

0 0

The Fourier transform of a unit impulse located at :

                  ( ) ( )

                          
                           =cos(2 ) sin (2 )

j t

j t

t t

F t t e dt

e
t j t

πµ

πµ

µ δ

πµ πµ

∞ −

−∞

−

=

= −

=
−

∫
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Fourier Transform: Impulse Trains 

  ( ),      ( ) ( )T T
n

Impulse train s t s t t n Tδ
∞

∆ ∆
=−∞

= − ∆∑

2

2/2

/2

The Fourier series:

                 ( )

where

1                ( )

nj t
T

T n
n

nT j t
T

n TT

s t c e

c s t e dt
T

π

π

∞
∆

∆
=−∞

∆ −
∆

∆−∆

=

=
∆

∑

∫
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Fourier Transform: Impulse Trains 

2

( )
nj t

T
T n

n
s t c e

π∞
∆

∆
=−∞

= ∑

2 2/2 /2

/2 /2

0

1 1( )  = ( )

1 1    =

n nT Tj t j t
T T

n TT T
c s t e dt t e dt

T T

e
T T

π π

δ
∆ ∆− −

∆ ∆
∆−∆ −∆

=
∆ ∆

=
∆ ∆

∫ ∫

21 nj t
T

n
e

T

π∞
∆

=−∞

=
∆ ∑

2 2 2
2 2

2 ( )
( )

n n nj t j t j tj t j tT T T

nj t
T

e e e dt e e dt

ne dt
T

π π π
πµ πµ

π µ
δ µ

∞ ∞− −∆ ∆ ∆
−∞ −∞

∞ − −
∆

−∞

 
ℑ = = 
 

= = −
∆

∫ ∫

∫
1 2

2

( ) ( ) j t

ntj
T

n n e du
T T

e

πµ

π

δ µ δ µ
∞−

−∞

∆

 ℑ − = − ∆ ∆ 

=

∫
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Fourier Transform: Impulse Trains 

{ }
2

2

Let ( ) denote the Fourier transform of the
periodic impulse train ( ) 

1   ( ) ( )

1           

1            = ( )

T

nj t
T

T
n

nj t
T

n

n

S
S t

S S t e
T

e
T

n
T T

π

π

µ

µ

δ µ

∆

∞
∆

∆
=−∞

∞
∆

=−∞

∞

=−∞

 
= ℑ = ℑ ∆ 

 
= ℑ ∆  

−
∆ ∆

∑

∑

∑
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Fourier Transform and Convolution 

The convolution of two functions is denoted 
by the operator 

          ( )    ( ) ( ) ( )f t h t f h t dτ τ τ
∞

−∞
= −∫

{ } 2

2

2

2

( )    ( ) ( ) ( )

                      = ( ) ( )

                      = ( ) ( )

                      = ( ) ( )

 

j t

j t

j

j

f t h t f h t d e dt

f h t e dt d

f H e d

H f e d

πµ

πµ

πµτ

πµτ

τ τ τ

τ τ τ

τ µ τ

µ τ τ

∞ ∞ −

−∞ −∞

∞ ∞ −

−∞ −∞

∞ −

−∞

∞ −

−∞

 ℑ = −  
 −  

  

∫ ∫

∫ ∫

∫
∫

                     = ( ) ( )H Fµ µ
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Fourier Transform and Convolution 

( )   ( ) ( ) ( )f t h t H Fµ µ⇔

( ) ( ) ( )   ( )f t h t H Fµ µ⇔

Fourier Transform Pairs 
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Fourier Transform of Sampled Functions 

( ) ( ) ( )

( ) ( )

T

n

f t f t s t

f t t n Tδ

∆

∞

=−∞

=

= − ∆∑
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Fourier Transform of Sampled Functions 

{ } { }( ) ( ) ( ) ( ) ( )   ( )TF f t f t s t F Sµ µ µ∆= ℑ = ℑ =

1( ) ( )
n

nS
T T

µ δ µ
∞

=−∞

= −
∆ ∆∑

? 

( ) ( )   ( ) ( ) ( )

1         = ( ) ( )

1         = ( ) ( )

1         = ( )

n

n

n

F F S F S d

nF d
T T

nF d
T T

nF
T T

µ µ µ τ µ τ τ

τ δ µ τ τ

τ δ µ τ τ

µ

∞

−∞

∞∞

−∞
=−∞

∞ ∞

−∞
=−∞

∞

=−∞

= = −

− −
∆ ∆

− −
∆ ∆

−
∆ ∆

∫

∑∫

∑ ∫

∑
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Question 

The Fourier transform of the  
sampled function (shown in the  
following figure) is  
 
1. Continuous 

 
2. Discrete 
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Fourier Transform of Sampled Functions 

► A bandlimited signal is a signal whose Fourier transform 
is zero above a certain finite frequency. In other words, if 
the Fourier transform has finite support then the signal is 
said to be bandlimited.  
 

    An example of a simple bandlimited signal is a sinusoid of 
the form, 

 
 

( ) sin(2 )x t ftπ θ= +
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Fourier Transform of Sampled Functions 

( )
1 ( )

n

F
nF

T T

µ

µ
∞

=−∞

=

−
∆ ∆∑



maxµ−
maxµ

max

Over-sampling 
1 2
T

µ>
∆

max

Critically-sampling
1 2
T

µ=
∆

max

under-sampling
1 2
T

µ<
∆
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Nyquist–Shannon sampling theorem 

( )f t

► We can recover       from its sampled version if we can 
isolate a copy of         from the periodic sequence of copies 
of this function contained in        , the transform of the 
sampled function  
 

► Sufficient separation is guaranteed if  
 

   Sampling theorem: A continuous, band-limited function 
can be recovered completely from a set of its samples if 
the samples are acquired at a rate exceeding twice the 
highest frequency content of the function 

( )f t
( )F µ

( )F µ

max
1 2
T

µ>
∆
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Nyquist–Shannon sampling theorem 

2( ) ( ) j tf t F e dπµµ µ
∞

−∞
= ∫

? 
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Aliasing 

   If a band-limited function is sampled at a rate that is less 
than twice its highest frequency? 

 
   The inverse transform will yield a corrupted function. This 

effect is known as frequency aliasing or simply as 
aliasing. 
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Aliasing 
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Aliasing 



2/20/2014 29 

Function Reconstruction from Sampled Data 

( ) ( ) ( )F H Fµ µ µ= 

{ }
{ }

1

1

( ) ( )

       ( ) ( )

       ( )   ( )

f t F

H F

h t f t

µ

µ µ

−

−

= ℑ

= ℑ

=





[ ]( ) ( )sinc ( ) /
n

f t f n T t n T n T
∞

=−∞

= ∆ − ∆ ∆∑
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The Discrete Fourier Transform (DFT) of One 
Variable 

1
2 /

0
( ) ( ) ,     0,1,..., 1

M
j x M

x
F f x e Mπµµ µ

−
−

=

= = −∑

1
2 /

0

1( ) ( ) ,       0,1, 2,..., 1
M

j x Mf x F e x M
M

πµ

µ

µ
−

=

= = −∑
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2-D Impulse and Sifting Property: Continuous 

       if 0
The impulse ( , ),        ( , )

0        otherwise

and         ( , ) 1

t z
t z t z

t z dtdz

δ δ

δ
∞ ∞

−∞ −∞

∞ = =
= 


=∫ ∫

0 0 0 0

The sifting property

        ( , ) ( , ) (0,0)

and

        ( , ) ( , ) ( , )

f t z t z dtdz f

f t z t t z z dtdz f t z

δ

δ

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

=

− − =

∫ ∫

∫ ∫
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2-D Impulse and Sifting Property: Discrete 

1       if 0
The impulse ( , ),        ( , )

0        otherwise
x y

x y x yδ δ
= =

= 


0 0 0 0

The sifting property

       ( , ) ( , ) (0,0)

and

        ( , ) ( , ) ( , )

x y

x y

f x y x y f

f x y x x y y f x y

δ

δ

∞ ∞

=−∞ =−∞

∞ ∞

=−∞ =−∞

=

− − =

∑ ∑

∑ ∑
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2-D Fourier Transform: Continuous 

2 ( )

2 ( )

       ( , ) ( , )

and

       ( , ) ( , )

j t z

j t z

F f t z e dtdz

f t z f e d d

π µ ν

π µ ν

µ ν

µ ν µ ν

∞ ∞ − +

−∞ −∞

∞ ∞ +

−∞ −∞

=

=

∫ ∫

∫ ∫
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2-D Fourier Transform: Continuous 

2 ( )

/2 /2 2 ( )

/2 /2

( , ) ( , )

            

sin( ) sin( )            

j t z

T Z j t z

T Z

F f t z e dtdz

Ae dtdz

T TATZ
T T

π µ ν

π µ ν

µ ν

πµ πν
πµ πν

∞ ∞ − +

−∞ −∞

− +

− −

=

=

   =      

∫ ∫
∫ ∫
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2-D Sampling and 2-D Sampling Theorem 

2  impulse train:

               ( , ) ( , )T Z
m n

D

s t z t m T z n Zδ
∞ ∞

∆ ∆
=−∞ =−∞

−

= − ∆ − ∆∑ ∑
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2-D Sampling and 2-D Sampling Theorem 

max max

max max

max ma

Function ( , ) is said to be band-limited if its Fourier transform
is 0 outside a rectangle established by the intervals [- , ]
and [- , ], that is
         ( , ) 0 for | |  and | |

f t z

F

µ µ
ν ν
µ ν µ µ ν ν= ≥ ≥ x

max max

Two-dimensional sampling theorem:
A continuous, band-limited function ( , ) can be recovered with 
no error from a set of its samples if the sampling intervals are

1 1             T<  and  Z<
2 2

f t z

µ ν
∆ ∆



2/20/2014 37 

2-D Sampling and 2-D Sampling Theorem 
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Aliasing in Images: Example 

Under-sampling 

In an image system, the 
number of samples is fixed at 
96x96 pixels. If we use this 
system to digitize checkerboard 
patterns …  
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Aliasing in Images: Example 

Re-sampling 
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Aliasing in Images: Example 

Re-sampling 
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Moiré patterns 

► Moiré patterns are often an undesired artifact of images 
produced by various digital imaging and computer graphics 
techniques 

   e. g., when scanning a halftone picture or  ray tracing a 
checkered plane. This cause of moiré is a special case of 
aliasing, due to under-sampling a fine regular pattern 

   
 
    http://en.wikipedia.org/wiki/Moiré_pattern  
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Moiré patterns 
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Moiré patterns 

A moiré pattern 
formed by 
incorrectly down-
sampling the 
former image 



Moire Pattern 

2/20/2014 44 



2/20/2014 45 



2/20/2014 46 



2/20/2014 47 

2-D Discrete Fourier Transform and Its 
Inverse 

2 ( / / )1 1

0 0

DFT:

( , ) ( , )

0,1, 2,..., 1; 0,1, 2,..., 1;
( , ) is a digital image of size M N.

j x M y NM N

x y
F f x y e

M N
f x y

π µ ν

µ ν

µ ν

− +− −

= =

=

= − = −
×

∑∑

2 ( / / )1 1

0 0

IDFT:

1( , ) ( , )
j x M y NM N

x y
f x y F e

MN

π µ ν

µ ν
+− −

= =

= ∑∑
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Properties of the 2-D DFT 
relationships between spatial and frequency intervals 

Let  and  denote the separations between samples,
then the seperations between the corresponding discrete,
frequency domain variables are given by

1              

1and        

T Z

M T

N Z

µ

ν

∆ ∆

∆ =
∆

∆ =
∆
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Properties of the 2-D DFT 
translation and rotation 

0 0

0 0

2 ( / / )
0 0

2 ( / / )
0 0

  ( , ) ( , )
and       
 ( - , - ) ( , )

j x M y N

j x M y N

f x y e F

f x x y y F e

π µ ν

π µ ν

µ µ ν ν

µ ν

+

− +

⇔ − −

⇔

0 0

Using the polar coordinates
cos     y=rsin     = cos      = sin

results in the following transform pair:
           ( , ) ( , )

x r

f r F

θ θ µ ω ϕ ν ω ϕ

θ θ ω ϕ θ

=

+ ⇔ +
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Properties of the 2-D DFT 
periodicity  

1 2 1 2

2  Fourier transform and its inverse are infinitely periodic
( , ) ( , ) ( , ) ( , )

D
F F k M F k N F k M k Nµ ν µ ν µ ν µ ν
−

= + = + = + +

1 2 1 2( , ) ( , ) ( , ) ( , )f x y f x k M y f x y k N f x k M y k N= + = + = + +

02 ( / )
0( ) ( )j x Mf x e Fπ µ µ µ⇔ −

0 / 2,     ( )( 1) ( / 2)xM f x F Mµ µ= − ⇔ −

( , )( 1) ( / 2, / 2)x yf x y F M Nµ ν+− ⇔ − −
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Properties of the 2-D DFT 
periodicity  
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Properties of the 2-D DFT 
Symmetry  
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Properties of the 2-D DFT 
Fourier Spectrum and Phase Angle  

( , )

1/22 2

2 2 2

2-D DFT in polar form
                     ( , ) | ( , ) |
Fourier spectrum

                   | ( , ) | ( , ) ( , )

Power spectrum
                    ( , ) | ( , ) | ( , ) ( , )
Pha

j u vF u v F u v e

F u v R u v I u v

P u v F u v R u v I u v

φ=

 = + 

= = +
se angle

( , )                   (u,v)=arctan
( , )

I u v
R u v

φ
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Example:  Phase Angles 
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Example:  Phase Angles and The Reconstructed 
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2-D Convolution Theorem  

1

0

1-D convolution 

             ( )   ( ) ( ) ( )
M

m
f x h x f m h x m

−

=

= −∑

1 1

0 0

2-D convolution 

        ( , )   ( , ) ( , ) ( , )
M N

m n
f x y h x y f m n h x m y n

− −

= =

= − −∑∑

0,1,2,..., 1; 0,1,2,..., 1.x M y N= − = −

( , )   ( , ) ( , ) ( , )f x y h x y F u v H u v⇔

( , ) ( , ) ( , )   ( , )f x y h x y F u v H u v⇔
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An Example of Convolution 

Mirroring h 
about the 
origin 

Translating 
the mirrored 
function by x 

Computing the 
sum for each 
x 
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An Example of Convolution 

It causes the 
wraparoun

d error 

It can be 
solved by 
appending 

zeros 
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Zero Padding 

► Consider two functions f(x) and h(x) composed of A and B 
samples, respectively 
 

► Append zeros to both functions so that they have the same 
length, denoted by P, then wraparound is avoided by 
choosing 

       
         P ≥A+B-1 



2/20/2014 62 

Zero Padding 

► Let f(x,y) and h(x,y) be two image arrays of sizes A×B and 
C×D pixels, respectively. Wraparound error in their 
convolution can be avoided by padding these functions 
with zeros 

( , )       0 -1  0 -1
( , )

0                   p

f x y x A and y B
f x y

A x P or B y Q
≤ ≤ ≤ ≤

=  ≤ ≤ ≤ ≤

( , )       0 -1  0 -1
( , )

0                   p

h x y x C and y D
h x y

C x P or D y Q
≤ ≤ ≤ ≤

=  ≤ ≤ ≤ ≤

Here 1; 1P A C Q B D≥ + − ≥ + −
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Summary 
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Summary 
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Summary 
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Summary 
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The Basic Filtering in the Frequency Domain 

Why is the spectrum at 
almost ±45 degree  stronger 
than the spectrum at other 

directions? 
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The Basic Filtering in the Frequency Domain 

► Modifying the Fourier transform of an image  
 

► Computing the inverse transform to obtain the processed 
result 

1( , ) { ( , ) ( , )}

( , ) is the DFT of the input image
( , ) is a filter function.

g x y H u v F u v

F u v
H u v

−= ℑ
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The Basic Filtering in the Frequency Domain 

► In a filter H(u,v) that is 0 at the center of the transform 
and 1 elsewhere, what’s the output image?  
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The Basic Filtering in the Frequency Domain 
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Zero-Phase-Shift Filters 

1( , ) { ( , ) ( , )}g x y H u v F u v−= ℑ

( , ) ( , ) ( , )F u v R u v jI u v= +

[ ]1( , ) ( , ) ( , ) ( , ) ( , )g x y H u v R u v jH u v I u v−= ℑ +
 

Filters affect the real and imaginary parts equally, 
 

and thus no effect on the phase.  
 

These filters are called zero-phase-shift filters 
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Examples: Nonzero-Phase-Shift Filters 

Even small changes in the phase angle can have 
dramatic (usually undesirable) effects on the filtered 
output 

Phase angle is 
multiplied by 

0.5 

Phase angle is 
multiplied by 

0.5 
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Summary:  
Steps for Filtering in the Frequency Domain 
1. Given an input image f(x,y) of size MxN, obtain the  

padding parameters P and Q. Typically, P = 2M and Q = 2N. 
 

2. Form a padded image, fp(x,y) of size PxQ by 
appending the necessary number of zeros to f(x,y) 
 

3. Multiply fp(x,y) by (-1)x+y to center its transform 
 

4. Compute the DFT, F(u,v) of the image from step 3 
 

5. Generate a real, symmetric filter function*, H(u,v), of 
size PxQ with center at coordinates (P/2, Q/2)    

 *generate from a given spatial filter, we pad the spatial filter, multiply the expadded 
array by (-1)x+y, and compute the DFT of the result to obtain a centered H(u,v). 
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Summary:  
Steps for Filtering in the Frequency Domain 

6. Form the product G(u,v) = H(u,v)F(u,v) using array 
multiplication  
 

7. Obtain the processed image 
 
 
 
 

8. Obtain the final processed result, g(x,y), by extracting 
the MxN region from the top, left quadrant of gp(x,y) 

       
 
 
 
 

[ ]{ }1( , ) ( , ) ( 1)x y
pg x y real G u v− + = ℑ − 
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An Example:  
Steps for Filtering in the Frequency Domain 
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Correspondence Between Filtering in the 
Spatial and Frequency Domains (1) 

 
 
 
 

2 2- /2

Let H(u) denote the 1-D frequency domain Gaussian filter

                               ( ) uH u Ae σ=

2 2 22

The corresponding filter in the spatial domain 

                    ( ) 2 xh x Ae π σπσ −=

1. Both components are Gaussian and real 
 

2. The functions behave reciprocally 
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Correspondence Between Filtering in the 
Spatial and Frequency Domains (2) 

 
 
 
 

2 22 2
1 2/2 /2- -

1 2

Let ( ) denote the difference of Gaussian filter

                  ( )
                   with  and 

u u

H u

H u Ae Be
A B

σ σ

σ σ
= −
≥ ≥

2 2 2 2 2 2
1 22 2

1 2

The corresponding filter in the spatial domain 

     ( ) 2 2x xh x Ae Aeπ σ π σπσ πσ− −= −

High-pass filter or low-pass filter ? 



2/20/2014 79 

Correspondence Between Filtering in the 
Spatial and Frequency Domains (3) 
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Correspondence Between Filtering in the 
Spatial and Frequency Domains: Example 

 
 
 
 

600x600 

Presenter
Presentation Notes
In this example, we start with a spatial mask and show how to generate its corresponding filter in the frequency domain. Then, we compare the filtering results obtained using frequency domain and spatial techniques. We use the 3x3 Sobel vertical edge detector. The left one is a 600x600 pixel image, and its spectrum is shown on the right.
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Correspondence Between Filtering in the 
Spatial and Frequency Domains: Example 

 
 
 
 

Presenter
Presentation Notes
In this example, we start with a spatial mask and show how to generate its corresponding filter in the frequency domain. Then, we compare the filtering results obtained using frequency domain and spatial techniques. We use the 3x3 Sobel vertical edge detector. The left one is a 600x600 pixel image, and its spectrum is shown on the right.
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Generate H(u,v) 

 
 
 
 

( , )           0 599  0 599
( , )

0           600 602  600 602p

f x y x and y
f x y

x or y
≤ ≤ ≤ ≤

=  ≤ ≤ ≤ ≤

( , )           0 2  0 2
( , )

0              3 602  3 602p

h x y x and y
h x y

x or y
≤ ≤ ≤ ≤

=  ≤ ≤ ≤ ≤

Here (600) (3) 1 602;
        (600) (3) 1 602.

P A C
Q B D
≥ + − =
≥ + − =

Presenter
Presentation Notes
In this example, we start with a spatial mask and show how to generate its corresponding filter in the frequency domain. Then, we compare the filtering results obtained using frequency domain and spatial techniques. We use the 3x3 Sobel vertical edge detector. The left one is a 600x600 pixel image, and its spectrum is shown on the right.
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1. Multiply ( , ) by (-1)  to center the frequency domain filterx y
ph x y +

Generate H(u,v) 

2. Compute the forward DFT of the result in (1)

3. Set the real part of the resulting DFT to 0 to account for 
    parasitic real parts

4.  Multiply the result by (-1) ,  which is implicit when ( , ) 
    was moved to the center of ( , ).

u v

p

h x y
h x y

+
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0

0

Ideal Lowpass Filters (ILPF)
1    if ( , )

          ( , )
0    if ( , )

D u v D
H u v

D u v D
≤

=  >

Image Smoothing Using Filter Domain Filters: 
ILPF 

0

1/22 2

 is a positive constant and ( , ) is the distance between a point ( , ) 
 in the frequency domain and the center of the frequency rectangle

               ( , ) ( / 2) ( / 2)

D D u v u v

D u v u P v Q = − + − 
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Image Smoothing Using Filter Domain Filters: 
ILPF 
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ILPF Filtering Example  
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ILPF 
Filtering 
Example 
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The Spatial Representation of ILPF 
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[ ]

0

2
0

Butterworth Lowpass Filters (BLPF) of order  and 
with cutoff frequency 

1          ( , )
1 ( , ) / n

n
D

H u v
D u v D

=
+

Image Smoothing Using Filter Domain Filters: 
BLPF 
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The Spatial Representation of BLPF 
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 2 2( , )/2

Gaussian Lowpass Filters (GLPF) in two dimensions is given 

                         ( , ) D u vH u v e σ−=

Image Smoothing Using Filter Domain Filters: 
GLPF 

2 2
0

0

( , )/2

By letting 

                 ( , ) D u v D

D

H u v e

σ
−

=

=
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Image Smoothing Using Filter Domain Filters: 
GLPF 
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Examples of smoothing by GLPF (1) 
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Examples of smoothing by GLPF (2) 
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Examples of smoothing by GLPF (3) 
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Image Sharpening Using Frequency Domain 
Filters 

   A highpass filter is obtained from a given lowpass filter 
using 

 
 ( , ) 1 ( , )HP LPH u v H u v= −

0

0

A 2-D ideal highpass filter (IHPL) is defined as
0    if ( , )

                ( , )
1    if ( , )

D u v D
H u v

D u v D
≤

=  >
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Image Sharpening Using Frequency Domain 
Filters 

[ ]2
0

A 2-D Butterworth highpass filter (BHPL) is defined as
1                ( , )

1 / ( , ) nH u v
D D u v

=
+

2 2
0( , )/2

A 2-D Gaussian highpass filter (GHPL) is defined as

                ( , ) 1 D u v DH u v e−= −
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The Spatial Representation of Highpass 
Filters 
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Filtering Results by IHPF 
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Filtering Results by BHPF 
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Filtering Results by GHPF 
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Using Highpass Filtering and Threshold for 
Image Enhancement 

BHPF  
(order 4 with a cutoff 
frequency 50) 
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The Laplacian in the Frequency Domain 

{ }2 1

The Laplacian image 
( , ) ( , ) ( , )f x y H u v F u v−∇ = ℑ

2 2 2( , ) 4 ( )H u v u vπ= − +

2 2 2

2 2

( , ) 4 ( / 2) ( / 2) )

           4 ( , )

H u v u P v Q

D u v

π

π

 = − − + − 
= −

2

Enhancement is obtained 
( , ) ( , ) ( , )     -1g x y f x y c f x y c= + ∇ =
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The Laplacian in the Frequency Domain 

{ }
[ ]{ }
{ }

1

1

1 2 2

The enhanced image 
( , ) ( , ) ( , ) ( , )

           1 ( , ) ( , )

           1 4 ( , ) ( , )

g x y F u v H u v F u v

H u v F u v

D u v F u vπ

−

−

−

= ℑ −

= ℑ −

 = ℑ + 
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The Laplacian in the Frequency Domain 
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Unsharp Masking, Highboost Filtering and 
High-Frequency-Emphasis Fitering 

Unsharp masking and highboost filtering
( , ) ( , ) * ( , )maskg x y f x y k g x y= +

( , ) ( , ) ( , )mask LPg x y f x y f x y= −

[ ]1( , ) ( , ) ( , )LP LPf x y H u v F u v−= ℑ

[ ]{ }
[ ]{ }

1

1

( , ) 1 * 1 ( , ) ( , )

           1 * ( , ) ( , )

LP

HP

g x y k H u v F u v

k H u v F u v

−

−

 = ℑ + − 

= ℑ +
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Unsharp Masking, Highboost Filtering and 
High-Frequency-Emphasis Fitering 

[ ]{ }1
1 2

1 2

( , ) * ( , ) ( , )

0  and  0
HPg x y k k H u v F u v

k k

−= ℑ +

≥ ≥
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Gaussian Filter 
D0=40 

High-Frequency-Emphasis Filtering 
Gaussian Filter 

K1=0.5, k2=0.75 
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Homomorphic Filtering 

[ ] [ ] [ ]( , ) ( , ) ( , )f x y i x y r x yℑ ≠ ℑ ℑ

( , ) ( , ) ( , )f x y i x y r x y=

( , ) ln ( , ) ln ( , ) ln ( , )z x y f x y i x y r x y= = +

= ? 

{ } { } { } { }( , ) ln ( , ) ln ( , ) ln ( , )z x y f x y i x y r x yℑ = ℑ = ℑ +ℑ

( , ) ( , ) ( , )i rZ u v F u v F u v= +
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Homomorphic Filtering 

{ }
{ }
{ } { }

1

1

1 1

( , ) ( , )

          ( , ) ( , ) ( , ) ( , )

          ( , ) ( , ) ( , ) ( , )
          '( , ) '( , )

i r

i r

s x y S u v

H u v F u v H u v F u v

H u v F u v H u v F u v
i x y r x y

−

−

− −

= ℑ

= ℑ +

= ℑ +ℑ

= +

( , ) ( , ) ( , )
          ( , ) ( , ) ( , ) ( , )i r

S u v H u v Z u v
H u v F u v H u v F u v

=
= +

( , ) '( , ) '( , )
0 0( , ) ( , ) ( , )s x y i x y r x yg x y e e e i x y r x y= = =
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Homomorphic Filtering 

The illumination component of an image generally is 
characterized by slow spatial variations, while the 
reflectance component tends to vary abruptly 
 
These characteristics lead to associating the low 
frequencies of the Fourier transform of the logarithm of an 
image with illumination the high frequencies with 
reflectance. 
 



2/20/2014 115 

 
 
 
 

Homomorphic Filtering 

2 2
0( , )/( , ) ( ) 1 c D u v D

H L LH u v eγ γ γ
 −   = − − +  

Attenuate the contribution 
made by illumination and 

amplify the contribution made 
by reflectance 

Attenuate the contribution 
made by illumination and 

amplify the contribution made 
by reflectance 
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Homomorphic Filtering 

0

0.25
2

1
80

L

H

c
D

γ
γ

=
=

=
=
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Homomorphic Filtering 
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Selective Filtering 

Non-Selective Filters:  
operate over the entire frequency rectangle 
 
Selective Filters 
operate over some part, not entire frequency rectangle 
• bandreject or bandpass: process specific bands 
• notch filters: process small regions of the frequency 
rectangle 
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Selective Filtering:  
Bandreject and Bandpass Filters 

( , ) 1 ( , )BP BRH u v H u v= −
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Selective Filtering:  
Bandreject and Bandpass Filters 
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Selective Filtering:  
Notch Filters 

Zero-phase-shift filters must be symmetric about the origin. 
A notch with center at (u0, v0) must have a corresponding 
notch at location (-u0,-v0). 
 
Notch reject filters are constructed as products of highpass 
filters whose centers have been translated to the centers of 
the notches. 

1

-

                         ( , ) ( , ) ( , )

where ( , ) and ( , ) are highpass filters whose centers are 
at ( , ) and (- , - ), respectively.

Q

NR k k
k

k k

k k k k

H u v H u v H u v

H u v H u v
u v u v

−
=

=∏
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Selective Filtering:  
Notch Filters 

1

-

                         ( , ) ( , ) ( , )

where ( , ) and ( , ) are highpass filters whose centers are 
at ( , ) and (- , - ), respectively.

Q

NR k k
k

k k

k k k k

H u v H u v H u v

H u v H u v
u v u v

−
=

=∏

1/22 2

1/22 2

( , ) ( / 2 ) ( / 2 )

( , ) ( / 2 ) ( / 2 )

k k k

k k k

D u v u M u v N v

D u v u M u v N v−

 = − − + − − 

 = − + + − + 

[ ] [ ]
3

2 2
1 0 0

A Butterworth notch reject filter of order n

1 1( , )
1 / ( , ) 1 / ( , )

NR n n
k k k k k

H u v
D D u v D D u v= −

   
=    

+ +      
∏
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Examples: 
Notch 

Filters (1) 

0

A Butterworth notch 
reject filter D =3 
and n=4 for all 
notch pairs
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Examples: 
Notch Filters 

(2) 
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