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Fourier Series and Fourier Transform: History

» Jean Baptiste Joseph Fourier, French mathematician and physicist
(03/21/1768-05/16/1830) http://en.wikipedia.org/wiki/Joseph_Fourier

Orphaned: at nine

Egyptian expedition
with Napoleon I:
1798

Governor of Lower

Egypt
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Permanent
Secretary of the
French Academy of
Sciences: 1822

Théorie analytigue
de /la chaleur :
1822

(The Analytic
Theory of Heat)


http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/w/index.php?title=Th%C3%A9orie_analytique_de_la_chaleur&action=edit
http://en.wikipedia.org/w/index.php?title=Th%C3%A9orie_analytique_de_la_chaleur&action=edit

Fourier Series and Fourier Transform: History

Fourier Series

Any periodic function can be expressed as the sum of sines
and /or cosines of different frequencies, each multiplied by
a different coefficients

Fourier Transform

Any function that is not periodic can be expressed as the
Integral of sines and /or cosines multiplied by a weighing
function
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Fourier Series: Example
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2/20/2014 FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.



2/20/2014

Preliminary Concepts

j =+/—1, a complex number
C=R+ |l

the conjugate
C*=R- jl

|C|=+vR*+ 1% and @ =arctan(l / R)
C =[C|(cos@+ jsinO)
Using Euler's formula,
C<C|e



Fourier Series

A function f (t) of a continuous variable t that is periodic
with period, T, can be expressed as the sum of sines and
cosines multiplied by appropriate coefficients

.27n

f(t)= i c:neJ T

N=—o0
where
1 A

T/2 — ==t
cn:—j f(tle T dt  forn=0,+1+2,..
T /102
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Impulses and the Sifting Property (1)

A unit impulse of a continuous variable t located
at t=0, denoted o(t), defined as

00 Ift=0
o(t) = .
0 iIft=0

and Is constrained also to satisfy the identity

| stydt=1

The sifting property I £ F(t)o(t—t,)dt = f (to)

ji f (t)s(t)dt = f (0)
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Impulses and the Sifting Property (2)
A unit impulse of a discrete variable x located
at x=0, denoted o6(x), defined as
500 :{1 |-fx =0
0 Ifx=0
and Is constrained also to satisfy the identity

Y 5(x)=1

X=—00

The sifting property i f (X)o(x—x%,) = f(X,)
i F(0S() = f(0)
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Impulses and the Sifting Property (3)

Impulse train s, (t),

s, ()= > S(t—nAT)

N=—0

sar(f) FIGURE 4.3 An
impulse train.

-« =3AT -2AT —-AT O AT 2AT 3AT ---
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Fourier Transform: One Continuous Variable

The Fourier Transform of a continous function f (t)

F(u)=3{f(t)}= j“; f (t)e 12*dt

The Inverse Fourier Transform of F ()

fO) =3 {F(w}=] Fue*du

2/20/2014 11



Fourier Transform

1)

-W/2 0 W/2

abc

FIGURE 4.4 (a) A simple func
infinity in both directions.

2/20/2014

: One Continuous Variable
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Fourier Transform: Impulses

The Fourier transform of a unit impulse located at the origin:

F(u) = j“; S(t)e 17 gt

The Fourier transform of a unit impulse located at t =t,:

F(u)= j"; S(t—t,)e 12 dt

2/20/2014
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Fourier Transform: Impulse Trains

Impulse train s,; (t), s, ()= > S(t—nAT)

N=—00

The Fourier series:ss-

.27n

- j=—t
a1 (£) = l cfe o
N=—o0

(n

~n

.
... =3AT —2AT —Qr #AT/2 AT 2AT-j3Kh ...

e — AT
A Cn o A-I- _AT/? SAT (t)e d
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Fourier Transform: Impulse Trains
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Fourier Transform: Impulse Trains

Let S(u) denote the Fourier transform of the
periodic impulse train S,; (t)

16
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Fourier Transform and Convolution

The convolution of two functions iIs denoted
by the operator %

f(tyxh(t)=|_ f(r)h(t-z)dz

17



Fourier Transform and Convolution

Fourier Transform Pairs

T(t)*h(t) < H)F(u)

T (t)n(t) < H(u)* F(u)



Fourier Transform of Sampled Functions

f(t)
A

S

RIRRE

Y
—

f(t) = f(t)s, (1)
=Y F()5(t-nAT)

N=—0o0

]

o =2AT—ATO0 AT2AT -
J(0)sar(t)
A

~ ~
-— ~

!
!
/

AT
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o —2AT—-ATO0 AT2AT -
fi = f(KAT)
A

Y
—

o0 o

FIGURE 4.5

(a) A continuous
function. (b) Train
of impulses used
to model the
sampling process.
(c) Sampled
function formed
as the product of
(a) and (b).

(d) Sample values
obtained by
integration and
using the sifting
property of the
impulse. (The
dashed line in (c¢)
is shown for
reference. It is not
part of the data.)
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Fourier Transform of Sampled Functions

F(u)=3{T}=3{f s, O} = 2

5(( )> Fl(ﬂiséﬁz_ ji F(r)S(u—7)dz
f FO) Y ou- r—o)dr

N=—o0

ﬁZ | @G-t Tyoe
1
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Question

The Fourier transform of the
sampled function (shown in the
following figure) is

1. Continuous

2. Discrete

fi = f(KAT)

21



Fourier Transform of Sampled Functions

A bandlimited signal is a signal whose Fourier transform
IS zero above a certain finite frequency. In other words, if
the Fourier transform has finite support then the signal is
said to be bandlimited.

An example of a simple bandlimited signal is a sinusoid of
the form,

X(t) =sin(2x ft + 0)

2/20/2014
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Fourier Transform of Sampled Functions

F(u)

A

_lumax 0 Hinax

-

Over-sampling
1

; "> 2 ey
F(u) = AT

1 < n i _
— Y F(u——) Critically-sampling
/A (A AT 1
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under-sampling

1

— <2
AT lleaX s



Nyquist—Shannon sampling theorem

We can recover f(t) from its sampled version if we can
Isolate a copy of F(x) from the periodic sequence of copies
of this function contained in F(u), the transform of the
sampled function f(t)

1
Sufficient separation is guaranteed If AT >2U

Sampling theorem: A continuous, band-limited function
can be recovered completely from a set of its samples if
the samples are acquired at a rate exceeding twice the
highest frequency content of the function

2/20/2014 24



Nyquist—-Shannon sampling theorem

F(u)
" Mmax M max d
| I | | I I i C
—2/AT -1AT 10 1/AT 2/AT
| | FIGURE 4.8
| H(w) | Extracting one
N period of the
AT
transform of a
? band-limited
function using an
>~ K .
0 ideal lowpass
. filter.
F(u) =

L

\
~ 1

“Mmax 0 M max

fO) =] Flue " du

_______“3:: —_——

AN

|
|
|
H(u) F(p)
|
|
|
|
|
|
|

2/20/2014 25



Aliasing

If a band-limited function is sampled at a rate that is less
than twice its highest frequency?

The inverse transform will yield a corrupted function. This
effect is known as frequency aliasing or simply as
aliasing.

2/20/2014
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Aliasing

F(w)

| | —- 1 | | -
~3/AT -2/AT ~1/AT! 0  |1/AT  2/AT  3/AT
| |
HG)
[ 1 [
| AT |
=
| 0 |
| |
F(|u)= |(;ua)
| |
| |
| |
| |
| |
| | -
“Mmax 0 M max
a
b
c

FIGURE 4.9 (a) Fourier transform of an under-sampled, band-limited function.
(Interference from adjacent periods is shown dashed in this figure). (b) The same ideal
lowpass filter used in Fig. 4.8(b). (c) The product of (a) and (b). The interference from
adjacent periods results in aliasing that prevents perfect recovery of F(w) and,
therefore, of the original, band-limited continuous function. Compare with Fig. 4.8.
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Aliasing

[

—{arf

FIGURE 4.10 Illustration of aliasing. The under-sampled function (black dots) looks
like a sine wave having a frequency much lower than the frequency of the continuous
signal. The period of the sine wave is 2 s, so the zero crossings of the horizontal axis
occur every second. AT is the separation between samples.
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Function Reconstruction from Sampled Data

F(u) =H(u)F(u)

2/20/2014

29



The Discrete Fourier Transform (DFT) of One
Variable

M -1 _
F(e)=> f(e’ ™ — 4=01,.,M-1
x=0

M -1 _
f(x):iZ F(u)e!” ™  x=0,1,2,..,M -1
M =

2/20/2014
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2-D Impulse and Sifting Property: Continuous

Ift=z=0
The impulse o(t, 2), o(t,z) = ” .
0 otherwise

and [ [ &(t z)dtdz =1

The sifting property

2/20/2014 31



2-D Impulse and Sifting Property: Discrete

1 ifx=y=0

The impulse 6(x, y), o(X,y) = .
0 otherwise

The sifting property
> > Fy)S(xy) = £(0,0)

X=—00 y=—00

and

IDIRTCRVECE AR ICN'S

X=—00 y=—00

2/20/2014 32
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2-D Fourier Transform: Continuous

Fu,v) = jfo jz f (t,z)e 127 dtdz

and

f(t,2) = f:o j: f(u,v)eiZ g 1dy

33



2-D Fourier Transform: Continuous

»T/2

J-T/2

= ATZ

a b

F(u,v)= :OO joo f(t,z)e "2 dtdz

—00 o —00

(212 Ae— J 277(,ut+vz)dtdz
-71/2

sin(zuT) [sin(m/T)}
ul vl

FIGURE 4.13 (a) A 2-D function, and (b) a section of its spectrum (not to scale). The
block is longer along the r-axis, so the spectrum is more “contracted” along the p-axis.

Compare with Fig. 4.4.

2/20/2014
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2-D Sampling and 2-D Sampling Theorem

2 — D impulse train:

Syraz 1,2)= D > 5(t—mAT,z-nAZ)

M=—00 N=—00

FIGURE 4.14
Two-dimensional
impulse train.

sataz(t 2)

&

-
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2-D Sampling and 2-D Sampling Theorem

Function f (t, z) is said to be band-limited if its Fourier transform
IS 0 outside a rectangle established by the intervals [-z. ..,z ]

], that is

F(u,v)=0for |ulzu.., and |v[zv,

and [-v

max ! Vmax

Two-dimensional sampling theorem:
A continuous, band-limited function f (t, z) can be recovered with
no error from a set of its samples if the sampling intervals are

and AZ<
21leaX 2Vmax

2/20/2014 36
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2-D Sampling and 2-D Sampling Theorem

Footprint of an

ideal lowpass
(box) filter

_—t — —

2/20/2014

ab

FIGURE 4.15
Two-dimensional
Fourier transforms
of (a) an over-
sampled, and

(b) under-sampled
band-limited
function.
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Aliasing in Images: Example

In an image system, the
number of samples is fixed at
96x96 pixels. If we use this
system to digitize checkerboard
patterns ...

—+ Under-sampling

FIGURE 4.16 Aliasing in images. In (a) and (b), the lengths of the sides of the squares
are 16 and 6 pixels, respectively, and aliasing is visually negligible. In (c¢) and (d), the
sides of the squares are 0.9174 and 0.4798 pixels, respectively, and the results show
significant aliasing. Note that (d) masquerades as a “normal” image.

38



a b e Re-sampling

FIGURE 4.17 Illustration of aliasing on resampled images. (a) A digital image with negligible visual aliasing.
(b) Result of resizing the image to 50% of its original size by pixel deletion. Aliasing is clearly visible.
(c) Result of blurring the image in (a) with a 3 X 3 averaging filter prior to resizing. The image is slightly
more blurred than (b), but aliasing is not longer objectionable. (Original image courtesy of the Signal
Compression Laboratory, University of California, Santa Barbara.)
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Aliasing In Images: Example

abc Re-sampling

FIGURE 4.18 Illustration of jaggies. (a) A 1024 X 1024 digital image of a computer-generated scene with
negligible visible aliasing. (b) Result of reducing (a) to 25% of its original size using bilinear interpolation.
(c) Result of blurring the image in (a) with a 5 X 5 averaging filter prior to resizing it to 25% using bilinear
interpolation. (Original image courtesy of D. P. Mitchell, Mental Landscape, LLC.)

2/20/2014 40



Moiré patterns

Moiré patterns are often an undesired artifact of images
produced by various digital imaging and computer graphics
technigues

e. g., when scanning a halftone picture or ray tracing a
checkered plane. This cause of moiré is a special case of
aliasing, due to under-sampling a fine regular pattern

http://en.wikipedia.org/wiki/Moiré_pattern

2/20/2014 41
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A moiré pattern
formed by
incorrectly down-
sampling the
former image
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Moire Pattern
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digitized patterns.

FIGURE 4.20
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FIGURE 4.21

A newspaper
image of size

246 X 168 pixels
sampled at 75 dpi
showing a moiré
pattern. The
moiré pattern in
this image is the
interference
pattern created
between the £45°
orientation of the
halftone dots and
the north-south
orientation of the
sampling grid
used to digitize
the image.
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FIGURE 4.22
A newspaper
image and an
enlargement
showing how
halftone dots are
arranged to
render shades of

gray.
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2-D Discrete Fourier Transform and Its

Inverse
DFT:
M—1N-1 —j2z(uxIM+vy/N)
F(uv)=> > f(x,y)e

x=0 y=
u=012,..,.M-1Lv=012,..,N-1,
f (X, y) Is adigital image of size M x N.

IDFT:

1 M=IN-1 j2z(ux/IM+vy/N)

N =y 2.2 Fluve

x=0 y=

2/20/2014



Properties of the 2-D DFT

relationships between spatial and frequency intervals

Let AT and AZ denote the separations between samples,
then the seperations between the corresponding discrete,

frequency domain variables are given by

1
Ay=—>
e MAT
and Av 1

T NAZ

2/20/2014 48



Properties of the 2-D DFT

translation and rotation

f (X, y)ejZﬂ(ﬂOX/Mwoy/N) < F(u— 1y, v—v)
and
F (X=X, Y-Yo) = F(u,v)

e—j27z(,uX0/|\/| +vYo/N)

Using the polar coordinates

X=rcosfd y=rsind u=wCoSep v=wSsIin@

results in the following transform pair:
f(r,0+6,) © F(w,¢+6,)

2/20/2014 49



Properties of the 2-D DFT
periodicity

2 — D Fourier transform and its inverse are infinitely periodic
F(u,v)=F(u+kM,v)=F(u,v+K,N)=F(u+kM,v+k,N)

f(x,y)=T(X+kM,y)=F(X,y+k,N)=f(x+kM,y+k,N)

f (x)e! ™M o F (1 — u,)
w=MI12, F(X)() < F(u-M/2)

f (X, Y)(=D) < F(u=M /2,y —N/2)

2/20/2014 50



F(u)

Two back-to-back
periods meet here.

|“ .'n'. L AR - U
[ I I
— M2 0 M/2—1—/\—M/2M—/: — M
F(u)
4
Two back-to-back
periods meet here.
I Lttt I -‘.'.- '.Irl..--' .U
0 x—M/2 —M-1
|<— One period (M samples) —|
| | | | |
B I LR -
| | | | | |
| | | | | |
| | | | | |
| ¢ | | | |
| | | | | |
| | o | |
| | | | 0,0 IN/2— N —1—
I ~ 1T 0 _T""("l:‘ : ——-
: ]
| | F(u,v) \ | | M2 —
I IFour back-to-backl I
| Iperiods meet here.! |
pel'lo M _1 F(u ,v)
| | | | ’
T L IR — u
! ! Yyu
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O

Four back-to-back /

periods meet here.

|| = Periods of the DFT.

= M X N data array, F(u, v).

a
b

cd

FIGURE 4.23
Centering the
Fourier transform.
(a) A1-D DFT
showing an infinite
number of periods.
(b) Shifted DFT
obtained by
multiplying f(x)
by (—1)* before
computing F(u).
(c) A2-D DFT
showing an infinite
number of periods.
The solid area is
the M X N data
array, F(u,v),
obtained with Eq.
(4.5-15). This array
consists of four
quarter periods.
(d) A Shifted DFT
obtained by
multiplying f(x, y)
by (—1)**

before computing
F(u,v). The data
now contains one
complete, centered
period, as in (b).
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Properties of the 2-D DFT

Symmetry

Frequency Domain'

Spatial Domain "
1) f(x,y) real
2) f(x.y) imaginary
3) f(x,y)real
4) f(x,y) imaginary
5) f(—x, —y) real
6) f(—x, —y) complex
7) f(x, y) complex
8) f(x,y)real and even
9) f(x, y) real and odd
10) f(x,y)imaginary and even
11) f(x,y)imaginary and odd
12) f(x,y) complex and even
13) f(x, y) complex and odd

A A A

)

F'(u,v) = F(—u, —v)
F'(—u, —v) = —F(u,v)
R(u,v)even; I(u, v) odd
R(u, v) odd; I(u. v) even
F"(u, v) complex

F(—u, —v) complex
F'(—u — v) complex
F(u, v) real and even
F(u, v) imaginary and odd
F(u, v) imaginary and even
F(u, v) real and odd

F(u, v) complex and even

F(u, v) complex and odd

"Recall that x. y, u, and v are discrete (integer) variables, with x and « in the range [0, M — 1]. and y, and
v in the range [0, N — 1]. To say that a complex function is even means that its real and imaginary parts

2/20/201

are even, and similarly for an odd complex function.

TABLE 4.1 Some
symmetry
properties of the
2-D DFT and its
inverse. R(u, v)
and /(u,v) are the
real and imaginary
parts of F(u,v),
respectively. The
term complex
indicates that a
function has
nonzero real and
imaginary parts.
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Properties of the 2-D DFT

Fourier Spectrum and Phase Angle

2-D DFT in polar form

F(u,v) =| F(u,v)|e/®v
Fourier spectrum

[F UV [ R U+ 17U |
Power spectrum

P(u,v) =| F(u,v) |’= R*(u,v) + 1*(u,Vv)
Phase angle

_ | (u,v)
¢(u,v)=arctan { R(u,v)}
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a b
cd

FIGURE 4.24

(a) Image.

(b) Spectrum
showing bright spots
in the four corners.
(c) Centered
spectrum. (d) Result
showing increased
detail after a log
transformation. The
zero crossings of the
spectrum are closer in
the vertical direction
because the rectangle
in (a) is longer in that
direction. The
coordinate
convention used
throughout the book
places the origin of
the spatial and
frequency domains at
the top left.
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Example: Phase Angles

abc

FIGURE 4.26 Phase angle array corresponding (a) to the image of the centered rectangle
in Fig. 4.24(a), (b) to the translated image in Fig. 4.25(a), and (c) to the rotated image in
Fig. 4.25(c).
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Example: Phase Angles and The Reconstructed

2/20/2014

abc
de f

FIGURE 4.27 (a) Woman. (b) Phase angle. (c) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman.
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2-D Convolution Theorem

1-D convolution
f (x)*xh(x) = Mz_:l f (m)h(x —m)

2-D convolution

Z

f(x,y)*xh(x,y)= Sy f(m,n)h(x—m,y—n)

n=0

x=0,12,..,M-1y=0,12,.,N-1.
f(x,y)xh(x,y) < F(u,v)H(u,v)

f(x,y)h(x,y) < F(u,v)*H(u,v)

3
g)
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An Example of Convolution

f(m)

I
0 200 400
hm)

I I
0 200 400

m

Mirroring h
about the
origin

m

Translating
the mirrored
function by x

~
Computing the
sum for each
X
%

af

bg

c h

d i

e ]

FIGURE 4.28 Left
column:
convolution of
two discrete

functions
obtained using the
approach

discussed in
Section 3.4.2. The
result in (e) is
correct. Right
column:
Convolution of
the same
functions, but
taking into
account the
periodicity
implied by the
DFT. Note in (j)
how data from
adjacent periods
produce

wraparou nd error,

yielding an
incorrect
convolution
result. To obtain
the correct result,
function padding
must be used.

59



An Example of Convolution

f(m)
3
0 I2(=][]I 400
hm)
It causes the
wraparoun o
d error
o o
It can be m)

solved by
appending
Zeros

0
2/20/2014

200
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m

. flm)
P R— N—
1 i
Do :
A
10 200 400
v h(m)
poeeeed 12 S R
: - i i
: 1 ! i i
vt ; i
| 0 200 400
v R(—m)
Pl
10 200 400
h(x — m)
X - . L
.
0 200 400

.......

.......

—! Range of ==
Fourier transform
computation

m

m

m

m

oo g
(il =ge =

e ]

FIGURE 4.28 Left
column:
convolution of
two discrete
functions
obtained using the
approach
discussed in
Section 3.4.2. The
result in (e) is
correct. Right
column:
Convolution of
the same
functions, but
taking into
account the
periodicity
implied by the
DFT. Note in (j)
how data from
adjacent periods
produce
wraparound error,
yielding an
incorrect
convolution
result. To obtain
the correct result,
function padding
must be used.
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Zero Padding

Consider two functions f(x) and h(x) composed of A and B
samples, respectively

Append zeros to both functions so that they have the same
length, denoted by P, then wraparound is avoided by
choosing

P 2A+B-1

2/20/2014 61



Zero Padding

Let f(x,y) and h(x,y) be two image arrays of sizes AxB and
CxD pixels, respectively. Wraparound error in their
convolution can be avoided by padding these functions

with zeros

o f(x,y) 0<x<A-land 0<y<B-1
w1 @ A<x<PorB<y<Q

h (%, y) = h(x,y) 0<x<C-land 0<y<D-1
A W C<x<PorD<y<Q

HereP>A+C-1,0>B+D-1

2/20/2014
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sSummary

Name Expression(s)
1) Discrete Fourier M—1N-1
transform (DFT) Flu,v) = E Ef(L y) e 2 ux/Mtoy/N)
of f(x,y) x=0 y=0
2) Im-'cl:r;c Lliscrc_lc N Mol Ne1
Fourier transform flx.y) = E E Flu.v) f,,r_—[ﬁx;M+L_}f;f\'}
(IDFT) of Flu. v) MN = =,

3) Polar representation

4) Spectrum

5) Phase angle

6) Power spectrum

T) Average value

F(u,v) = |F(u.v)|e/*®?)

12

|F (u, v)| = [REUL v) + 17w i:)] )
R = Real(F): I = Imag(F)

[, v
du, v) = lan_l[ ( }}
Riu, v)

P(u.v) = |F(u, v)|*

M-1N-1

F(x.y) = ) = 2 F(0.0)

MN = 320

(Continued )
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sSummary

Name

Expression(s)

8) Periodicity (k; and
k> are integers)

9) Convolution

1) Correlation

11) Separability

2) Obtaining the inverse
Fourier transform
using a forward

transform algorithm,

Flu,v) = Flu + kyM.v») = F(u, v + k:N)
= Flu + ky\M.v + k)N)

flx,y) = fix + kM, y) = f(x.y + k;N)

= f{x + kM. y + k>N
M-1N-1

f(x, v)y*khix, y) = E Ef{m,n}h{x - m,y — n)

m=l r=0

M-1N-1
f(x.y)¥h(x.y) = E Ef*{mﬁ}h{x + m.y + n)
m=l n=U
The 2-D DFT can be computed by computing 1-D
DFT transforms along the rows (columns) of the
image, followed by 1-D transforms along the columns
(rows) of the result. See Section 4.11.1.
) M-IN-1 o N
MNf(x,y)= > > F(u, p)e [2riux/Mtvy(N)

. . . U=l v=0 . . # .
Thisequation indicates that inputting F (i, #) into an

algorithm that computes the forward transform
(right side of above equation) yields MNFf (x, v).
Taking the complex conjugate and dividing by MN
gives the desired inverse. See Section 4.11.2.
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sSummary

Name

DFT Pairs

1) Symmeltry
properties

2) Linearity

3) Translation
(general)

4) Translation
to center of

the frequency

rectangle,
(M/2.NI2)

5) Rotation

6) Convolution
theorem'

See Table 4.1

afi(x,v) + bfa(x. v) = aFj(u, v) + bF(u.v)

f‘{ X. }} E"E mipx/ M +wmy/N) == F{” - Uy U — -1.:'[]}

f(x = xo.y = yo) = Flu. v)e 2o

flx.y) (1)< F(u — M/2.v — Nj2)
flx = M/2.y = N/2) = F(u.v)(=1)*""

flr.8 + 8y) = Flw. ¢ + )

X =rcos y=rsinfl u=wcosg ¥ =wsng

flx.y)y*xh(x, v) = Flu, v)H(u v)
flx.y)h(x,y)= F(u, v)* H(u, v)

2/20/2014

(Continued )
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Summary

Name DFT Pairs

7) Correlation flx.y)¥rh(x. y) < F'(u.v) H(u. v)

theorem' f+{x~ vih(x, y)< Flu,v)¥ H(u. v)
8) Discrete unit dlx.y)e=1

impulse

sin(mrua) sin(mwovb)
9) Rectangle rect|a. b] < ab (mua) sin( }e_f'_"{“"”’m
= (mua)  (wob)
10) Sine sin(2wupx + 2mogy) <
1
j;[ﬁ(u + Muy. v+ Nvg) — ot — Muy., v — N?}“}]

11) Cosine cos(2mugx + 2mugy) <

1
;[ﬁ(u + Muy. v+ Nug) + 6(u — Mug, v — Nt‘“}]

The following Fourier transform pairs are derivable only for continuous variables,
denoted as before by t and z for spatial variables and by o and » for frequency
variables. These results can be used for DFT work by sampling the continuous forms.

d\"(a\"
12) Differentiation (;) (H—_) flt.z) = (j2ap)"(j2mv)" F(u, v)
(The expressions <
on the right amf(t, z) a"f(t, z)
= - ) m e — 2 n '
assume that arm = (2mp)"F(p. v); az" = (J2mv) F(p. v)
f(+oo, £00) = 0.)

o

. 522 (22 .
13) Gaussian A27ale TTED) o Ao (W H 2T (4 is a constant)

" Assumes that the functions have been extended by zero padding. Convolution and correlation are asso-
clative, commutative, and distributive.
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The Basic Filtering in the Frequency Domain

-

N>
..""‘- £l

Why is the spectrum at
almost 45 degree stronger
than the spectrum at other

directions?

ab

FIGURE 4.29 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of
(a). (Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials
Research, McMaster University, Hamilton, Ontario, Canada.)
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The Basic Filtering in the Frequency Domain

Modifying the Fourier transform of an image

Computing the inverse transform to obtain the processed
result

g(x,y) =3 {Hu,v)F(u,v)}

F(u,v) is the DFT of the input image
H(u,Vv) is a filter function.

2/20/2014
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The Basic Filtering in the Frequency Domain

» In a filter H(u,v) that is O at the center of the transform
and 1 elsewhere, what's the output image?

-
o

o~ i| _’ = .
| A AN
\ = v

2/20/2014
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The Basic Filtering in the Frequency Domain

abc

de f

2/20/ 70
FIGURE 4.31 Top row: frequency domain filters. Bottom row: corresponding filtered images obtained using

Eq.(4.7-1). We used a = 0.85in (¢) to obtain (f) (the height of the filter itself is 1). Compare (f) with Fig. 4.29(a).



Zero-Phase-Shift Filters

g(x,y)=3{H(u,v)F(u,v)}

F(u,v)=R(u,v)+ jl(u,v)

g(x,y)=3"[H(u,v)R(u,v)+ jH (u,v)I(u,v)]
Filters affect the real and imaginary parts equally,

and thus no effect on the phase.

These filters are called zero-phase-shift filters

2/20/2014
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Examples: Nonzero-Phase-Shift Filters

ab

FIGURE 4.35

(a) Image resulting
from multiplying by
0.5 the phase angle
in Eq. (4.6-15) and
then computing the
IDFT. (b) The
result of
multiplying the
phase by 0.25. The
spectrum was not
changed in either of
the two cases.

_ Phase angle is
multiplied by |ndesirable) ef multiplied by

outpu the 0.5
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Summary:

Steps for Filtering in the Frequency Domain

1. Given an input image f(x,y) of size MxN, obtain the
padding parameters P and Q. Typically, P = 2M and Q = 2N.

2. Form a padded image, f,(X,y) of size PxQ by
appending the necessary number of zeros to f(x,y)

3. Multiply f,(x,y) by (-1)**¥ to center its transform
4. Compute the DFT, F(u,v) of the image from step 3

5. Generate a real, symmetric filter function*, H(u,v), of
size PxQ with center at coordinates (P/2, Q/2)

*generate from a given spatial filter, we pad the spatial filter, multiply the expadded
array by (-1)**Y, and compute the DFT of the result to obtain a centered H(u,v).

2/20/2014
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Summary:
Steps for Filtering in the Frequency Domain

6. Form the product G(u,v) = H(u,v)F(u,v) using array
multiplication

7. Obtain the processed image

9 D (X, y) = {real [S_l [G(U, V)]i|} (_1)x+y

8. Obtain the final processed result, g(x,y), by extracting
the MxN region from the top, left quadrant of g,(X,y)
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79 oL
= o O
= 0

FIGURE 4.36

(a) An M X N
image, f.

(b) Padded image,
fpotsize P X Q.
(c) Result of
 multiplying f, by
(_ l)x+_})'

(d) Spectrum of
F,. (e) Centered
Gaussian lowpass
filter, H, of size
P X Q.

(f) Spectrum of
the product HF),

(g) &p> the product
of (—=1)*" and
the real part of
the IDFT of HF,.
(h) Final result, g,
obtained by
cropping the first
M rows and N
columns of g,
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Correspondence Between Filtering in the
Spatial and Frequency Domains (1)

et H(u) denote the 1-D frequency domain Gaussian filter
H(u) = Ae™

The corresponding filter in the spatial domain

2 2,2

h(x) =27 Ae 2™

1. Both components are Gaussian and real

2. The functions behave reciprocally

2/20/2014 7



Correspondence Between Filtering in the
Spatial and Frequency Domains (2)

Let H(u) denote the difference of Gaussian filter

H (u) _ Ae-u2/2012 . Be-UZ/ZGZ2
with A> B and o, > o,

The corresponding filter in the spatial domain

h(X) =270, Ae 2 7" 270, Ae? 7"

High-pass filter or low-pass filter ?

2/20/2014
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Correspondence Between Filtering in the
Spatial and Frequency Domains (3)

Hu) H(u) 4 C
A A b d

FIGURE 4.37

(a) A 1-D Gaussian
lowpass filter in the
frequency domain.
(b) Spatial

lowpass filter

- u > U corresponding to
h(x) (a).(c) Gaussian

& highpass filter in

11 the frequency
—1l&]-1 . .
Y domain. (d) Spatial
o[-0 highpass filter

— corresponding to

(c). The small 2-D

=% masks shown are
\} \/ spatial filters we
used in Chapter 3.
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B
Correspondence Between Filtering in the

Spatial and Frequency Domains: Example

ab

FIGURE 4.38

(a) Image of a
building, and
(b) its spectrum.

600x600

2/20/2014 80


Presenter
Presentation Notes
In this example, we start with a spatial mask and show how to generate its corresponding filter in the frequency domain. Then, we compare the filtering results obtained using frequency domain and spatial techniques. We use the 3x3 Sobel vertical edge detector. The left one is a 600x600 pixel image, and its spectrum is shown on the right.


Correspondence Between Filtering In the
Spatial and Frequency Domains: Example

-1 0

1

S 4&;‘/ I[

2/20/2014
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Z WI!’”IIII"" A X5
LTRSS ),

ab
cd

FIGURE 4.39

(a) A spatial
mask and
perspective plot
of its
corresponding
frequency domain
filter. (b) Filter
shown as an
image. (c) Result
of filtering
Fig.4.38(a) in the
frequency domain
with the filter in
(b). (d) Result of
filtering the same
image with the
spatial filter in
(a). The results
are identical.
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Presenter
Presentation Notes
In this example, we start with a spatial mask and show how to generate its corresponding filter in the frequency domain. Then, we compare the filtering results obtained using frequency domain and spatial techniques. We use the 3x3 Sobel vertical edge detector. The left one is a 600x600 pixel image, and its spectrum is shown on the right.


Generate H(u,v)

£ (xy)= f(X,Yy) 0<x<599 and 0<y <599
AR I 600 < x <602 or 600 <y <602
h (%, V) = h(X,y) 0<x<2and 0<y<?2
Y= 0 3< X <602 0r 3<y<602

Here P > A(600) + C(3) —1 = 602;
Q > B(600) + D(3) -1 = 602.

2/20/2014
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Presenter
Presentation Notes
In this example, we start with a spatial mask and show how to generate its corresponding filter in the frequency domain. Then, we compare the filtering results obtained using frequency domain and spatial techniques. We use the 3x3 Sobel vertical edge detector. The left one is a 600x600 pixel image, and its spectrum is shown on the right.


Generate H(u,v)

1. Multiply h (x,y) by (-1)*’ to center the frequency domain filter
2. Compute the forward DFT of the result in (1)

3. Set the real part of the resulting DFT to O to account for
parasitic real parts

4, Multiply the result by (-1)"*", which is implicit when h(X, y)
was moved to the center of h (X, y).
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Image Smoothing Using Filter Domain Filters:
ILPF

Ideal Lowpass Filters (ILPF)

s |1 1t D(u,v) <D,
(”’V)_{o if D(u,v) > D,

D, is a positive constant and D(u, V) is the distance between a point (u, V)
In the frequency domain and the center of the frequency rectangle

D(u,v)=[u-P/2)*+(v-Q/2) |

2/20/2014 84



Image Smoothing Using Filter Domain Filters:
ILPF

H(u, v) ; H(u, v)
— !

D (u, v)

a b e

FIGURE 4.40 (a) Perspective plot of an ideal lowpass-filter transfer function. (b) Filter displayed as an image.
(c) Filter radial cross section.
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ILPF Filtering Example

aaaaaaaa

ab

FIGURE 4.41 (a) Test pattern of size 688 X 688 pixels, and (b) its Fourier spectrum. The
spectrum is double the image size due to padding but is shown in half size so that it fits
in the page. The superimposed circles have radii equal to 10, 30, 60, 160, and 460 with
respect to the full-size spectrum image. These radii enclose 87.0, 93.1, 95.7, 97.8, and
99.2% of the padded image power, respectively.
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ILPF
Filtering
Example

2/20/2014
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FIGURE 4.42 (a) Original image. (b)—(f) Results of filtering using ILPFs with cutoff

frequencies set at radii values 10, 30, 60, 16{, and 460, as shown in Fig. 4.41(b). The
power removed by these filters was 13.6.9.4.3,2.2, and 0.8% of the total, respectively.
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The Spatial Representation of ILPF

ab

FIGURE 4.43

(a) Representation
in the spatial
domain of an
ILPF of radius 5
and size

1000 X 1000.
(b) Intensity
profile of a
horizontal line
passing through
the center of the
image.
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Image Smoothing Using Filter Domain Filters:
BLPF

Butterworth Lowpass Filters (BLPF) of order n and
with cutoff frequency D,

H(u,v)= =

1+[D(u,v)/ D,]”

ua T

=D (u, v)

abc

FIGURE 4.44 (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter displayed as an
image. (c) Filter radial cross sections of orders 1 through 4.
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FIGURE 4.42 (a) Original image. (b)~(f) Results of filtering using ILPFs with cutoff FIGURE 4.45 (a) Original image. (b)~(f) Results of filtering using BLPFs of order

frequencies set at radii values 10, 30, 60, 160, and 460, as shown in Fig, 4.41(b). The mth cutoff frequencies at the radii shown in Fig. 4.41. Compare with Fig, 4.42.
power removed by these filters was 13,6.9,4.3,2.2, and 0.8% of the total, respectively. P.Il:: RESEARCH -UNIVERBITY
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The Spatial Representation of BLPF

abecd

FIGURE 4.46 (a)-(d) Spatial representation of BLPFs of order 1, 2, 5, and 20, and corresponding intensity
profiles through the center of the filters (the size in all cases is 1000 > 1000 and the cutoff frequency is 5).
Observe how ringing increases as a function of filter order.
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Image Smoothing Using Filter Domain Filters:
GLPF

Gaussian Lowpass Filters (GLPF) in two dimensions is given

H (U,V) _ e—D2 (u,v)/252

By letting o = D,

H (u,v) _ e—Dz(u,v)IZDOZ
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Image Smoothing Using Filter Domain Filters:
GLPF

H(u, v) H(u, v)

—v 1.0
0.667

/DD=100

D(u, v)

abc

FIGURE 4.47 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D,.
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power removed by these filters was 13.6.9,4.3,2.2, and (.8% of the total, respectively. yo.RESEARCH - UMIVERSITY
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FIGURE 4.42 (a) Original image. (b)—~(f) Results of filtering usmg ILPFs with cutoff FIGURE 4.48 (a) Original i Image. (b)—(f) Results of filtering using GLPFs with cutoff
frequencies set at radii values 10, 30, 60, 160, and 460, as shown in Fig, 4.41(b). The frequencies at the radii shown in Fig. 4.41. Compare with Figs 4.42 and 4.45.
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Examples of smoothing by GLPF (1)

Historically, certain computer
programs were written using
oniy two digits rather than
four to define the applicable
year. Accordingly, the
company's seftware may
recognize a date using 00"
as 1900 rather than the vEar

Historically, certain computer
pregrams were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yEar

e &

2/20/2014

-~ ea

ab

FIGURE 4.49

(a) Sample text of
low resolution
(note broken
characters in
magnified view).
(b) Result of
filtering with a
GLPF (broken
character
segments were
joined).
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Examples of smoothing by GLPF (2)

abc

FIGURE 4.50 (a) Original image (784 X 732 pixels). (b) Result of filtering using a GLPF with D, = 100.
(c) Result of filtering using a GLPF with D, = 80. Note the reduction in fine skin lines in the magnified
sections in (b) and (c).



Examples of smoothing by GLPF (3)

abc

FIGURE 4.51 (a) Image showing prominent horizontal scan lines. (b) Result of filtering using a GLPF with
D, = 50. (c) Result of using a GLPF with D, = 20. (Original image courtesy of NOAA.)
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Image Sharpening Using Frequency Domain
Filters

A highpass filter is obtained from a given lowpass filter
using

HHP(U’V) =1 HLP(U’V)

A 2-D ideal highpass filter (IHPL) is defined as

s |0 11 D(u,v) < D,
(”’V)_{l if D(u,v) > D,

2/20/2014
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Image Sharpening Using Frequency Domain
Filters

A 2-D Butterworth highpass filter (BHPL) Is defined as
1

Huv)= 1+[D, / D(u,v)]"

A 2-D Gaussian highpass filter (GHPL) is defined as

H (u,v) _1_ e—Dz(u,v)/ZDg

2/20/2014
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H(u, ’U) H(u, ’L’)

—= 1.0+
# = D(u, v)
u
H(u, v)
Iy
—%10
# = D(u, v)
u
H(u, v)
\
7?10
| = D(u, v)
: u
2/20/2014 100

FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



The Spatial Representation of Highpass
Filters

abec

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain
highpass filters, and corresponding intensity profiles through their centers.
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Filtering Results by IHPF

abc
FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with D, = 30, 60, and 160.
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Filtering Results by BHPF

abc

FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with D, = 30, 60,
and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained
with an [HPFE.
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Filtering Results by GHPF

abc

FIGURE 4.56 Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with D, = 30, 60, and 160,
corresponding to the circles in Fig. 4.41(b). Compare with Figs. 4.54 and 4.55.
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Using Highpass Filtering and Threshold for
Image Enhancement

BHPF A
(order 4 with a cutoff
frequency 50)

/

abc

FIGURE 4.57 (a) Thumb print. (b) Result of highpass filtering (a). (c) Result of
thresholding (b). (Original image courtesy of the U.S. National Institute of Standards

and Technology.)
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The Laplacian in the Frequency Domain

H(u,v) =—47°@U’ +v%)

H(u,v) =—47°| (u-P/2)° +(v-Q/2)") |
=—47°D*(u,v)

The Laplacian image

VAE(x,y) =37 {H(u,v)F(u,v)}

Enhancement Is obtained
g(x, y)=f(x,y)+cvef(x,y) c=-1
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The Laplacian in the Frequency Domain

The enhanced Image

g(x,y)=3I"{F(u,v)-H(u,v)F(u,v)}
=3 H{[1-HUu,v)]Fu,v)}

= 3% {:1+ 47°D*(u,V) | F(u,v)}

2/20/2014



The Laplacian in the Frequency Domain

a b

FIGURE 4.58

(a) Original,
blurry image.

(b) Image
enhanced using
the Laplacian in
the frequency
domain. Compare
with Fig. 3.38(e).
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Unsharp Masking, Highboost Filtering and
High-Frequency-Emphasis Fitering

O mask (X’ y) = f (X1 y) - 1:LP (X’ y)
flo (%, ¥) =37 [H (U, V)F (u,v)]

Unsharp masking and highboost filtering
g(X, ) = T(X, ¥) +K* Gpasc (X, ¥)

I
|

L k*[1=H e (U] ] F (u,v)]
H[L+k*H e (U, V)] F U, V)]

a(x,y)

I
L
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Unsharp Masking, Highboost Filtering and
High-Frequency-Emphasis Fitering

g(x, Y) =3 {[kl_l_kZ*HHP(u’V)] F(U’V)}
k, 20 and k, >0



Gaussian Filter
D,=40

High-Frequency-Emphasis Filtering
Gaussian Filter
K1=0.5, k2=0.75

a b
c d

FIGURE 4.59 (a) A chest X-ray image. (b) Result of highpass filtering with a Gaussian
filter. (¢) Result of high-frequency-emphasis filtering using the same filter. (d) Result of
performing histogram equalization on (c). (Original image courtesy of Dr. Thomas R.
Gest, Division of Anatomical Sciences, University of Michigan Medical School.)
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Homomorphic Filtering

P y)=1(x,y)r(x y)

I f(xy)]=3[ix y)][3[r(x y)] 2
z(x,y)=InT(x,y) =Ini(x,y)+Inr(x,y)

3{z(x, ¥)}=3{In f(x, y)} = 3{Ini(x, y)} + 3{Inr(x, y)

Z(u,v)=F(u,v)+F(u,v)



Homomorphic Filtering

S(u,v)=H(u,v)Z(u,v)

=H(u,v)F (u,v)+H(u,Vv)F (u,v)
s(X,y) =37 {S(u,v)}
IH{H(U,Vv)F (u,v)+H(u,v)F (u,v)}
IHHUV)F UV} + 3 {Hu,V)F (u,v)}
F(X, y)+r(x,y)

g(x, y) — S(0Y) — @l (y)ar(y) _ io (X, y) r (X, y)
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Homomorphic Filtering

FIGURE 4.60

Summary of steps . » o
in homomorphic fy)=>| In [Z> DFT H(u, v) (DFT) exp g(x,y)
filtering.

The illumination component of an image generally is
characterized by slow spatial variations, while the
reflectance component tends to vary abruptly

These characteristics lead to associating the low
frequencies of the Fourier transform of the logarithm of an
Image with illumination the high frequencies with
reflectance.
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H(Uv) = (7, —7)|1-e

YH

YL

Homomorphic Filtering

Attenuate the contribution
made by illumination and
amplify the contribution made
by reflectance

D(u, v)

—C[Dz(u,v)/Dg]

T

FIGURE 4.61
Radial cross
section of a
circularly
symmetric
homomorphic
filter function.
The vertical axis is
at the center of
the frequency
rectangle and
D(u, v) is the
distance from the
center.
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E 4.62

1l body PET
b) Image
ced using
morphic

1¢. (Original
courtesy of
ichael

sey, CTI
systems. )
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ab

FIGURE

(a) Original
image. (b) Image
processed by
homomorphic
filtering (note
details inside
shelter).
(Stockham.)

2/20/2014

Homomorphic Filtering
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Selective Filtering

Non-Selective Filters:
operate over the entire frequency rectangle

Selective Filters

operate over some part, not entire frequency rectangle
e bandreject or bandpass: process specific bands

e notch filters: process small regions of the frequency
rectangle
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Selective Filtering:
Bandreject and Bandpass Filters

TABLE 4.6

Bandreject filters. W is the width of the band, D is the distance D(u, v) from the center of the filter, Dy is the
cutoff frequency, and »n is the order of the Butterworth filter. We show D) instead of D(u, v) to simplify the
notation in the table.

Ideal Butterworth Gaussian

H(u,v) =

D* — Dj

|
W W A\
0 lfﬂ;—T‘_D*_Di,—i—? H(u.z,)—
- I +
1 otherwise |:

Zn D D22
DW ] H(w.v) =1 — e Tov]

HBP(U1V) =1- HBR(U’V)
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Selective Filtering:
Bandreject and Bandpass Filters

ab

FIGURE 4.63

(a) Bandreject
Gaussian filter.

(b) Corresponding
bandpass filter.
The thin black
border in (a) was
added for clarity:; it
is not part of the
data.
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Selective Filtering:
Notch Filters

Zero-phase-shift filters must be symmetric about the origin.
A notch with center at (u,, Vy) must have a corresponding
notch at location (-ug,-Vvy).

Notch reject filters are constructed as products of highpass
filters whose centers have been translated to the centers of
the notches.

HNR(U’V) :ﬁHk(u’V)H_k(u’V)

where H, (u,v) and H , (u, V) are highpass filters whose centers are
at (u.,v,) and (-u,,-v, ), respectively.
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Selective Filtering:
Notch Filters

H (U, V) :ﬁHk(u,V)H_k(qu)

where H, (u,v) and H_, (u,Vv) are highpass filters whose centers are

at (u.,v,) and (-u.,-v, ), respectively.

A Butterworth notch reject filter of order n

1
HNR(U’V) —

1

3
1| 1+ [ Dy, / D ()]

D, (u,V) =| (U=M/2-u)* +(Vv=N/2-v,)’ |

 1+[ Dy / D (u,v)]™" |

1/2

D (uv)=[ (=M /2+u )2 +(v=N/2+v)* |
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Examples:
Notch
Filters (1)

2/20/2014

a b
c d

FIGURE 4.64

(a) Sampled
newspaper image
showing a

moir¢€ pattern.
(b) Spectrum.

(c) Butterworth
notch reject filter
multiplied by the
Fourier
transform.

(d) Filtered
image.

A Butterworth notch
reject filter D,=3
and n=4 for all
notch pairs
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Examples:
Notch Filters

(2)
ab
cd

FIGURE 4.65

(a) 674 X 674
image of the
Saturn rings
showing nearly
periodic
interference.

(b) Spectrum: The
bursts of energy
in the vertical axis
near the origin
correspond to the
interference
pattern. (¢) A
vertical notch
reject filter.

(d) Result of
filtering. The thin
black border in
(c) was added for
clarity; it is not
part of the data.
(Original image
courtesy

of Dr. Robert

A West,
NASA/JPL.)
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FIGURE 4.66

(a) Result
(spectrum) of
applying a notch
pass filter to

the DFT of

Fig. 4.65(a).

(b) Spatial
pattern obtained
by computing the
IDFT of (a).
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