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Wavelet Definition 

  “The wavelet transform is a tool that cuts up data, functions 
or operators into different frequency components, and then 
studies each component with a resolution matched to its 
scale” 

     Dr. Ingrid Daubechies, Lucent, Princeton U. 

 



4/14/2014 3 

Fourier vs. Wavelet 

► FFT, basis functions: sinusoids 

 

► Wavelet transforms: small waves, called wavelet 

 

► FFT can only offer frequency information 

 

► Wavelet: frequency + temporal information 

 

► Fourier analysis doesn’t work well on discontinuous, 
“bursty” data 

 music, video, power, earthquakes,… 
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Fourier vs. Wavelet 

► Fourier 

 Loses time (location) coordinate completely 

 Analyses the whole signal 

 Short pieces lose “frequency” meaning 

 

► Wavelets 

 Localized time-frequency analysis 

 Short signal pieces also have significance 

 Scale = Frequency band 
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Fourier transform 

Fourier transform: 
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Wavelet Transform 

► Scale and shift original waveform 

 

► Compare to a wavelet 

 

► Assign a coefficient of similarity 
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Scaling-- value of “stretch” 

► Scaling a wavelet simply means stretching (or 

compressing) it.  

 f(t) = sin(t) 

scale factor1 
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Scaling-- value of “stretch” 

► Scaling a wavelet simply means stretching (or 

compressing) it.  

 
f(t) = sin(2t) 

scale factor 2 
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Scaling-- value of “stretch” 

► Scaling a wavelet simply means stretching (or 

compressing) it.  

 f(t) = sin(3t) 

scale factor 3 
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More on scaling 

► It lets you either narrow down the frequency band of interest, or 
determine the frequency content in a narrower time interval 

 

► Scaling = frequency band 

 

► Good for non-stationary data 

 

► Low scalea Compressed wavelet   Rapidly changing detailsHigh 
frequency   

 

► High scale a Stretched wavelet  Slowly changing, coarse features 

  Low frequency   
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Scale is (sort of) like frequency 
 

 

Small scale 

-Rapidly changing details,  

-Like high frequency 

 

Large scale 

-Slowly changing 

 details 

-Like low frequency 
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Scale is (sort of) like frequency 
 

  

 

The scale factor works exactly the same with wavelets. 

The smaller the scale factor, the more "compressed" 

the wavelet. 
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Shifting 

Shifting a wavelet simply means delaying (or hastening) its 

onset. Mathematically, delaying a function  f(t)   by k is 

represented by f(t-k) 
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Shifting 

C = 0.0004 

C = 0.0034 



4/14/2014 15 

Five Easy Steps to a Continuous Wavelet 

Transform 

  

1. Take a wavelet and compare it to a section at the start of 

the original signal.  

2. Calculate a correlation coefficient c 
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Five Easy Steps to a Continuous Wavelet 

Transform 

  3. Shift the wavelet to the right and repeat steps 1 and 2 until you've 

covered the whole signal. 

 

 

4. Scale (stretch) the wavelet and repeat steps 1 through 3. 
 

5. Repeat steps 1 through 4 for all scales. 
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Coefficient Plots 
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Discrete Wavelet Transform 

► “Subset” of scale and position based on power of two  

 rather than every “possible” set of scale and position in 
continuous wavelet transform 

 

► Behaves like a filter bank: signal in, coefficients out 

 

► Down-sampling necessary  

   (twice as much data as original signal) 
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Discrete Wavelet transform 

signal 

filters 

Approximation 

(a) 
Details 

(d) 

lowpass highpass 
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Results of wavelet transform  
— approximation and details 

► Low frequency: 

 approximation (a) 

 

► High frequency  

 details (d) 

 

► “Decomposition” 

    can be performed 

    iteratively 
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Wavelet synthesis 

•Re-creates signal from coefficients 

•Up-sampling required 
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Multi-level Wavelet Analysis 

Multi-level wavelet 

decomposition tree Reassembling original signal 
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Subband Coding 



4/14/2014 24 

2-D 4-band filter bank  

Approximation 

Vertical detail 

Horizontal detail 

Diagonal details 
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An Example of One-level Decomposition 
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An Example of Multi-level Decomposition 



4/14/2014 27 

Wavelet Series Expansions 
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Wavelet Series Expansions 
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Wavelet Transforms in Two Dimensions 
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Inverse Wavelet Transforms in Two 
Dimensions 
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