Wavelet Transform



Wavelet Definition

"The wavelet transform is a tool that cuts up data, functions
or operators into different frequency components, and then
studies each component with a resolution matched to its
scale”

Dr. Ingrid Daubechies, Lucent, Princeton U.
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Fourier vs. Wavelet

FFT, basis functions: sinusoids

Wavelet transforms: small waves, called wavelet
FFT can only offer frequency information
Wavelet: frequency + temporal information

Fourier analysis doesn’t work well on discontinuous,
“bursty” data

= music, video, power, earthquakes,...
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Fourier vs. Wavelet

Fourier
= Loses time (location) coordinate completely
= Analyses the whole signal
= Short pieces lose “frequency” meaning

Wavelets
= Localized time-frequency analysis
= Short signal pieces also have significance
= Scale = Frequency band
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Fourier transform

Fourier transform:

Fourier
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Signal Constituent sinusoids of different frequencies
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Wavelet Transform

Scale and shift original waveform
Compare to a wavelet

Assign a coefficient of similarity
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Scaling-- value of “stretch”

» Scaling a wavelet simply means stretching (or
compressing) It.

f(t) = sin(t)

scale factorl
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Scaling-- value of “stretch”

» Scaling a wavelet simply means stretching (or
compressing) it.

f(t) = sin(2t)
scale factor 2
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Scaling-- value of “stretch”

» Scaling a wavelet simply means stretching (or
compressing) it.
f(t) = sin(3t)
scale factor 3
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More on scaling

It lets you either narrow down the frequency band of interest, or
determine the frequency content in a narrower time interval

Scaling = frequency band
Good for non-stationary data

Low scale->a Compressed wavelet-> Rapidly changing details—>High
frequency

High scale ->a Stretched wavelet - Slowly changing, coarse features
- Low frequency
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Scale is (sort of) like frequency

Small scale
-Rapidly changing details,
-Like high frequency

v e

Large scale
-Slowly changing
details

-Like low frequency
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Scale is (sort of) like frequency
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The scale factor works exactly the same with wavelets.
The smaller the scale factor, the more "compressed"
the wavelet.
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Shifting

Shifting a wavelet simply means delaying (or hastening) its
onset. Mathematically, delaying a function f(t) by ks
represented by f(t-k)
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Wavelet function Shifted wavelet function
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Shifting
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Five Easy Steps to a Continuous Wavelet
Transform

1. Take a wavelet and compare it to a section at the start of
the original signal.
2. Calculate a correlation coefficient ¢

Signal NM

Wavelet =

C=0.0102
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Five Easy Steps to a Continuous Wavelet
Transform

3. Shift the wavelet to the right and repeat steps 1 and 2 until you've
covered the whole signal.

Wt [ _\}\LH

4. Scale (stretch) the wavelet and repeat steps 1 through 3.

Wavelet o

' C=0.2247
5. Repeat steps 1 through 4 for all scales.
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Coefficient Plots
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Discrete Wavelet Transform

“Subset” of scale and position based on power of two

= rather than every “possible” set of scale and position in
continuous wavelet transform

Behaves like a filter bank: signal in, coefficients out

Down-sampling necessary
(twice as much data as original signal)
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Discrete Wavelet transform

signal
y
lowpass highpass
\ filters ‘ /
Approximation Details
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Results of wavelet transform
— approximation and details

Low frequency:
= approximation (a)

High frequency
= details (d)

“Decomposition”
can be performed
iteratively
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Wavelet synthesis

~500 coefs

~500 coefs

o DL

o (DL

M

L!

*Re-creates signal from coefficients

*Up-sampling required
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Multi-level Wavelet Analysis

Multi-level wavelet . |
decomposition tree Reassembling original signal

S
i S=A+D,

Ay
= Ay+ Dy+ Dy + D,

¥
Ag
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Subband Coding
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2-D 4-band filter bank

x(m, n) a—

Approximation
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An Example of One-level Decomposition

ab
elid

FIGURE 7.9

A four-band split
of the vase in

Fig. 7.1 using the
subband coding
system of Fig.7.7.
The four
subbands that
result are the

(a) approximation,
(b) horizontal
detail, (c) vertical
detail, and

(d) diagonal detail
subbands.
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An Example of Multi-level Decomposition

4/14/2014

v ad

; —
or/¢ “;\”,

()
1 R

A "
X DL

W

a
bcd

FIGURE 7.10

(a) A discrete
wavelet transform
using Haar H,
basis functions. Its
local histogram
variations are also
shown. (b)—(d)
Several different
approximations
(64 X 64,

128 x 128, and
256 X 256) that
can be obtained
from (a).
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Wavelet Series Expansions

Wavelet series expansion of function f (x) e L*(1 )
relative to wavelet y(x) and scaling function @(x)

fF()=2.c;, Ko, )+ > d;Ky,, (X
k i=io K
where ,
¢; (k) :approximation and/or scaling coefficients

d; (k) : detail and/or wavelet coefficients
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Wavelet Series Expansions

¢, ) =(F(X),0, ()= [ F (g, , (X)dx

and

d; (k) =(f (0.0, (0) = [ (v, (X)dlx



Wavelet Transforms in Two Dimensions

(X, Y) = p(X)p(y)
(X Y) = (X)ey)  @ima(XY)=2"p(2'x-m, 2"y -n)
v (G Y)=e(w(y) v L% y)=2"2y (2 x—m, 2y —n)

o (X, y)=y(Q)w(y) i={HV,D}
1 M-1N-1
W (JO m n — MN = zf(x1 y)(ojo,m,n(x’ y)
W, (mn) =3 (%Y (X, Y)

={H,V,D)



Inverse Wavelet Transforms in Two
Dimensions

f(X, y) \/WZZW (Jo’m n)(ojomn(x Y)
\/W, FZ/:DJZJ;%‘Z”‘W (J.m n)ijn(x y)
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