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1 Introduction

This lab will teach you the components of a basic matrix multiplication hardware accelerator for machine
learning, and the use of dataflows within such accelerators.

We will do this using a systolic-array based accelerator called Gemmini, developed here at UC
Berkeley. Gemmini is an open-source matrix multiplication accelerator for machine learning which is
based on a systolic-array architecture. We will use a fork of Gemmini, which has been stripped of several
components for the exercises in this lab. The accelerator will be integrated with a host Rocket processor
in an SoC configuration using the Chipyard framework.

1.1 Getting Started With Chipyard

This lab will require using the Chipyard framework. Chipyard is an integrated design, simulation and
implementation framework for open source hardware development. Chipyard is open-source online, but
we will use a fork that has been modified for the use-case of this lab. In particular, this fork has a custom
version of the Gemmini accelerator, which has been stripped of several components for the exercises in
this lab. Chipyard is based on the Chisel and FIRRTL hardware description libraries, as well as the
Rocket Chip generator SoC generation ecosystem.

Additional information about Chisel can be found in https://www.chisel-lang.org/. While you
will not be required to write any Chisel code in this lab, basic familiarity with the language will be
helpful in understanding the implementation of generators and interactions between components of the
system. An initial introduction to Chisel can be found in the Chisel bootcamp: https://github.com/

freechipsproject/chisel-bootcamp. Detailed documentation of Chisel functions can be found in
https://www.chisel-lang.org/api/SNAPSHOT/index.html.

This lab assumes you have access to the EECS department instructional machines. In order to create
an instructional account, follow the instructions in https://inst.eecs.berkeley.edu/webacct. We
will use the eda machines, “eda-1.eecs.berkeley.edu” thru “eda-8”.

To install this custom Chipyard version, we will clone the Chipyard code repository from class repos-
itory: https://github.berkeley.edu/ee290-2/chipyard. Note that you may also fork the repository
if you would like to maintain your own version controlled copy1.

$ git clone https://github.berkeley.edu/ee290-2/chipyard.git

$ cd chipyard

$ ./scripts/init-submodules-no-riscv-tools.sh

Again, make sure you clone from the address that we provide above. If you try to use the
default Chipyard repo, rather than our fork, you will not be able to find tools that we have created
specifically for this class2. This will take a few minutes, and will clone the course Chipyard repository
and initiate the relevant submodules.

Note, that these instructions are slightly different than the instructions found in the main Chipyard
documentation due to the use of the course repository and a custom software development toolchain. We
provide you a centrally built version of the custom software development toolchain (“esp-tools”). The
pointers to this software development toolchain are located in the /home/ff/ee290-2/chipyard-env.sh
file on the instructional machines. Once the initialization is done, you will need to source /home/ff/

ee290-2/chipyard-env.sh. You will need to source /home/ff/ee290-2/chipyard-env.sh each time
you open a new terminal session and want to use Chipyard3.

1The class repository is found on a Berkeley GitHub Enterprise version which is accessible using your CalCentral account
- no need for for a public GitHub account

2The Berkeley GitHub Enterprise class repository is tracking the ee290 branch of the public Chipyard repository on
public Github at https://github.com/ucb-bar/chipyard/

3We provide the centrally built version of the toolchain for efficiency purposes. The same toolchain can be built locally
by users by running the scripts/build-toolchains.sh script in Chipyard with an esp-tools argument. This will result
in an env.sh file, which is a local equivalent to the chipyard-env.sh file we use in this lab
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$ source /home/ff/ee290-2/chipyard-env.sh

Additional documentation for the Chipyard framework can be found in https://chipyard.readthedocs.

io

1.2 Gemmini Generator

The Gemmini project [3] is developing a systolic-array based matrix multiplication unit generator for
the investigation of software/hardware implications of such integrated SoC accelerators. It is inspired
by recent trends in machine learning accelerators for edge and mobile SoCs.

Gemmini is implemented as a Rocket Custom Coprocessor (RoCC) with non-standard RISC-V cus-
tom instructions within the Chipyard environment. The Gemmini unit uses the RoCC port of a Rocket
or BOOM tile, and by default connects to the memory system through the System Bus (i.e., directly to
the L2 cache). The system architecture of a Gemmini accelerator is demonstrated in Figure 1.

You can find the Gemmini accelerator codebase within the chipyard/generators/gemmini directory
of your chipyard project.

Figure 1: Gemmini Systolic Array Matrix Multiplication Accelerator

In this lab, you will be provided with a version of Gemmini that does not have its systolic array
implemented. By implementing the systolic array (also called the “mesh” within the Gemmini codebase),
you will learn about the role of various components of a typical ML accelerator, as well as gain hands-on
experience with the implementation of a specified dataflow within a systolic array.

2 Background

In this lab we are going to focus on dataflows in matrix multiplication. Dataflows represent the flow
of data within a streaming architecture. In particular, in systolic-array architectures, dataflows often
embody the ordering of loops within a multi-level nested loop computation.
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Convolution operations in convolutional neural networks are often composed of a 7-level nested loops,
with the following dimension: input channel dimension (C), output channel dimensions (K), batch-size
dimension (N), filter width (R) and height (S) dimensions, feature width (W) and height (H) dimensions.

for (int n = 0; n < N; n++) {

for (int k = 0; k < K; k++) {

for (int p = 0; p < P; p++) {

for (int q = 0; q < Q; q++) {

for (int r = 0; r < R; r++) {

for (int s = 0; s < S; s++) {

for (int c = 0; c < C; c++) {

h = p * stride - pad + r;

w = q * stride - pad + s;

Output[n,k,p,q] += Input[n,c,h,w]*Weights[k,c,r,s];

}

}

}

}

}

}

}

As mentioned earlier, Gemmini is a matrix multiplication systolic array. Convolution operations in
convolutional neural networks are often lowered to a matrix multiplication operation using a procedure
called im2col. In this procedure, both the data tensor and the filters tensor are lowered to matrices
through replication and re-arranging. Further information and examples of im2col convolution lowering
can be found in [2], [1].
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Figure 2: Example convolutional layer with a batch size of 1. The input image of size 4x4 in in the RGB
format (3 input channel). The convolutional layer includes one filter with a size of 3x3, applied over 3
channels

Let us take a look at the example in Figure 2. This example demonstrates a small convolutional
layer executed on a 4x4 input RGB image, with one 3x3x3 convolution filter. In your lab report, answer
the following questions:

1. Perform a lowering of this convolution operation into a matrix multiplication operation using
the im2col technique. Write down the lowered data matrix and lowered filters matrix using the
notations in the example.

2. This example uses a batch size of 1 (which is common for image inference on edge devices). How
would the lowered matrices change with a larger batch size? Would a larger batch size be useful
for a matrix multiplication systolic array architecture?

Now that we have lowered the convolution operation into a GEMM operation, let us look at a common
3-level matrix multiplication loop for C = A*B:

for (int k = 0; k < DIM_K; k++) {

for (int j = 0; j < DIM_J; j++) {

for (int i = 0; i < DIM_I; i++) {

C[i,j] += A[i,k] * B[k,j];

}

}

}

This particular dataflow is called a weight-stationary dataflow, since the weight (filters) elements
remain constant, while the output data and feature input data flow during it’s computation.

In your lab report, answer the following question:
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Figure 3: Mesh hierarchy within the original Gemmini implementation. In this lab, you will replace this
entire component.

1. Write down the loop ordering for an output-stationary dataflow, where the output matrix is the
stationary matrix.

3 Your Assignment

The goals of this lab are to familiarize you with the concepts of dataflows in systolic array architectures,
as well as the Chipyard and Gemmini tools. Therefore, in this lab, you will replace the existing Chisel
implementation of the systolic array mesh in Gemmini with your own Verilog implementation. This will
enable you to get hands-on experience with dataflow routing and processing elements implementations,
as well as the components of the Gemmini accelerator and the Chipyard framework.

We have provided a wrapper to a Chisel Verilog BlackBox (generators/gemmini/src/main/scala
/gemmini/Mes.scala), which implements the same interfaces as the Mesh module of the Gemmini
accelerator. Your assignment is to write a Verilog implementation of MeshBlackBox.v (generators
/gemmini/src/main/resources/MeshBlackBox.v) which implements a weight-stationary dataflow. You
will notice that your mesh implementation is constrained by the properties of the Gemmini controller.
You will need to learn the properties of this controller (under the default configuration) in order to
understand when to pipeline your mesh, and how to process to control signals within the mesh.

While the original Gemmini mesh implementation implements both a weight-stationary (WS) and
an output-stationary (OS) dataflow, in this lab you are required to implement only a weight-stationary
dataflow. As a sidenote, this is the dataflow which is implemented by the TPU [4].

3.1 Implementation Notes

The original Gemmini implementation supports both WS and OS dataflows, as well as additional param-
eterization such as the level of pipelining with the systolic array. These options are implemented using a
hierarchy of Processing Elements (PEs) which are capable of multiple dataflows, as well as Tiles, which
are non-pipelined arrays of PEs. A pipelined Mesh is composed of multiple Tiles which is composed of
multiple PEs as demonstrated in Figure 3.

In this lab, you are going to replace the Gemmini Chisel implementation of the mesh with your own
Verilog implementation. Nevertheless, in this lab you are required to support only a WS dataflow, and

6



EE 290-2 Spring 2020 Lab 2: Systolic Arrays and Dataflows

a fully pipelined systolic array. As a result, you can assume that your tile size parameters (TILEROWS,
TILECOLUMNS) will always have a value of 1, and that the dataflow selection signal will always select a
WS dataflow (with a value of 1).

In order to not diverge too much from the original Gemmini implementation, you will still see the
implications of these additional options within your codebase, but you can assume they will accept only
the specified value.

Throughout your implementation, you will find that the mesh is highly constrained by the controller.
We do not expect you to modify the controller, but you will likely need to understand the interaction
between the controller and the mesh in order to obtain a functional result. Therefore, the next section
will describe the input patterns that the controller will feed into your systolic mesh, and the output
pattern that you are expected to implement.

3.2 Input and Output Patterns

In this lab, you will implement a weight-stationary systolic array which computes A×B+D = C, where
A, B, and D are all matrices. In this lab, we will fix D to 0, so you can instead assume that you’re
solving A×B = C.

Now, let us suppose that xij is the element at row i and column j of matrix X. Then, we could
compute A×B = C for 2-by-2 matrices as shown in Figure 4. Note that the square matrices have been
shifted into something more akin to a parallelogram so that each element reaches the right PE at the
right cycle. Google also created a helpful GIF4 which shows this pattern as well.
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Figure 4: A×B = C, where B is kept stationary in the systolic array.

However, Figure 4 still doesn’t tell us how B is fed into the systolic array in the first place. To do
that, we first preload B into the systolic array and then feed in A, as shown in figure Figure 5.

4https://storage.googleapis.com/gweb-cloudblog-publish/original images/Systolic Array for Neural Network 2g8b7.GIF
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Figure 5: A×B = C, where B is first preloaded into the systolic array.

This still has an obvious issue though: while preloading B, we aren’t able to do any useful work.
If we want to preload a different B for every matrix multiplication, then our throughput will actually
be halved. Therefore, our systolic array must actually be double-buffered, which means that every PE
must have at least two registers for the elements on B that it is responsible for storing. During any
particular cycle, one register will be used to perform multiply-accumulate operations, while the other
will be propagating elements of B downwards as part of the preloading process. Figure 6 illustrates how
our input pattern can be changed to accommodate this. In this example, we first compute α × β = γ,
and then compute A×B = C, overlapping the preloading stage of the second matrix multiplication with
the computation of the first one.
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Figure 6: α× β = γ, followed by A×B = C.

However, this still leaves us with one particular question. What if we want to preserve a previously
preloaded matrix, instead of overwriting it with a new matrix? How do we communicate that to the
PEs of the systolic array? Gemmini’s controller does this by passing a one-bit signal, called propagate,
through the systolic array as well. The signal describes which of the two registers used to store B should
be propagated downwards in that cycle, and which one should be used for multiply-accumulates. If we
want to re-use a previously preloaded B matrix, then we can simply decide not to change the value of
the propagate signal, and the old B values will continue to be used.

To hopefully make this more clear, Figure 7 shows us performing two consecutive matrix multiplica-
tions, α× β = γ and A×B = C, but with the propagate signals added.
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Figure 7: α × β = γ, followed by A × B = C. This time, we add the propagate signals on top. If we
wanted to reuse β for the second matrix multiplication instead of multiplying with a new, preloaded B
matrix, we would have kept the propagate signals constant at 1 after preloading β.

3.3 Interface

Observe the Chisel interface of the Mesh:

val io = IO(new Bundle {

val in_a = Input(Vec(meshRows, Vec(tileRows, inputType)))

val in_b = Input(Vec(meshColumns, Vec(tileColumns, inputType)))

val in_d = Input(Vec(meshColumns, Vec(tileColumns, inputType)))

val in_control = Input(Vec(meshColumns, Vec(tileColumns, new PEControl(accType))))

val out_b = Output(Vec(meshColumns, Vec(tileColumns, outputType)))

val out_c = Output(Vec(meshColumns, Vec(tileColumns, outputType)))
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val out_control = Output(Vec(meshColumns, Vec(tileColumns, new PEControl(accType))))

val in_valid = Input(Vec(meshColumns, Vec(tileColumns, Bool())))

val out_valid = Output(Vec(meshColumns, Vec(tileColumns, Bool())))

})

Where the PEControl bundle is defined as:

class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle {

val dataflow = UInt(1.W)

val propagate = UInt(1.W)

}

We provide an Verilog adapter between the Chisel interface and the Verilog blackbox interface. The
equivalent Verilog interface of the BlackBox Mesh module is:

module MeshBlackBox

#(parameter MESHROWS, TILEROWS, MESHCOLUMNS, TILECOLUMNS, INPUT_BITWIDTH, OUTPUT_BITWIDTH)

(

input clock,

input reset,

input signed [INPUT_BITWIDTH-1:0] in_a[MESHROWS-1:0][TILEROWS-1:0],

input signed [INPUT_BITWIDTH-1:0] in_d[MESHCOLUMNS-1:0][TILECOLUMNS-1:0],

input signed [INPUT_BITWIDTH-1:0] in_b[MESHCOLUMNS-1:0][TILECOLUMNS-1:0],

input in_control_dataflow[MESHCOLUMNS-1:0][TILECOLUMNS-1:0],

input in_control_propagate[MESHCOLUMNS-1:0][TILECOLUMNS-1:0],

input in_valid[MESHCOLUMNS-1:0][TILECOLUMNS-1:0],

output signed [OUTPUT_BITWIDTH-1:0] out_c[MESHCOLUMNS-1:0][TILECOLUMNS-1:0],

output signed [OUTPUT_BITWIDTH-1:0] out_b[MESHCOLUMNS-1:0][TILECOLUMNS-1:0],

output out_valid[MESHCOLUMNS-1:0][TILECOLUMNS-1:0]

);

The mesh ingests three controls signals, which are all input from the North side of the systolic array:

• in_control_dataflow - this signal controls the dataflow of the mesh. In this lab, it will be fixed
to a weight-stationary dataflow, with a signal value of 1’b1.

• in_control_propagate - this signal controls which of the double buffers within each PE is cur-
rently propagating. Notice, this means you will need to implement double-buffering PEs.

The mesh ingests three input data signals. You are expected to compute A ∗ B + D = C, but for
this lab, D will always be a 0 matrix.

• in_a - enters from the West side of the systolic array.

• in_b - enters from the North side of the systolic array.

• in_d - enters from the North side of the systolic array.

The mesh outputs two data signals, both exiting from the South side of the systolic array:

• out_b - relevant only when implementing both the OS and WS dataflows together. Irrelevant for
this lab. You can output anything you want for this.

• out_c - the result of your matrix multiplication.

Finally, there are input and output valid signals as well:
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• in_valid - enters from the North side of the systolic array. Describes whether the signals are
actually meaningful, or whether they should be ignored.

• out_valid - exits from the South side of the systolic array. Describes whether the outputs are
valid, or whether they are garbage data (probably as a result of cycles where there were invalid
inputs).

3.4 Building and Simulating Gemmini

We have provided a template Verilog file with the implemented interfaces with the generators/gemmini/
src/main/resources/vsrc/ directory of your Chipyard environment. You are required to complete
the implementation of the MeshBlackBox module.

In order to elaborate your design and construct a software RTL simulation using VCS, run the
following steps within the Chipyard directory:

$ cd sims/vcs

$ make CONFIG=GemminiEE290Lab2RocketConfig

These will use the Synopsys VCS simulator on the eda machines. If you choose so, you may also
use the Verilator open-source simulator by running the same command in the sims/verilator direc-
tory. However, in our experience, it is much slower to compile. The first time you run these com-
mands may take a while (10-15 minutes) since many scala packages will be downloaded. The gener-
ated source files (including Verilog) for the design will now appear in the sims/vcs/generated-src/

example.TestHarness.GemminiEE290Lab2RocketConfig/ directory.
If you want to generate a vpd file for debugging using waveforms, you will need to generate a debug

simluator using the make debug CONFIG=GemminiEE290Lab2RocketConfig command.
More information about building a Verilator or VCS simulation which can execute tests can be found

here5.

3.5 Checking Correctness

You will test your implementation using the bare-metal software tests found in the Gemmini repository.
In order to build these tests, run:

$ cd generators/gemmini/software/gemmini-rocc-tests/

$ ./build.sh

This will build a set of bare-metal software tests that can be run using a VCS or Verilator simulation.

$ cd sims/vcs

$ # To run the "identity-baremetal" test:

$ ./simv-example-GemminiEE290Lab2RocketConfig

../../generators/gemmini/software/gemmini-rocc-tests/build/ee290/identity-baremetal

$ # To generate a .vpd waveform:

$ ./simv-example-GemminiEE290Lab2RocketConfig-debug

../../generators/gemmini/software/gemmini-rocc-tests/build/ee290/identity-baremetal

For the lab report, you are required to run the following tests:

• identity-baremetal - A matrix, whose elements increase consecutively by 1 starting from 10,
multiplied by the identity matrix. This test should pass even if double-buffering has not yet been
properly implemented.

5https://chipyard.readthedocs.io/en/latest/Simulation/Software-RTL-Simulation.html#verilator-open-source
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Figure 8: Images that you will classify from CIFAR10 in the cifar quant-baremetal test. The correct
classifications are “frog”, “cat”, “deer”, and “cat”, but our network classifies these as “frog”, “dog”,
“car” , and “cat” respectively.

• identity_negative-baremetal - Identical to the previous test, but with a negative identity matrix
instead.

• double-baremetal - Two consecutive matrix multiplications, in order to test double-buffering.

• double_keep_weights-baremetal - Two consecutive matrix multiplications, in which the second
matrix multiplication uses the preloaded weights from the first one.

• double_keep_weights_then_change-baremetal - Three consecutive matrix multiplications, in
which the second matrix multiplication uses the preloaded weights from the first one, but the third
matrix multiplication uses new weights.

• random_matmuls-baremetal - Eight consecutive matrix multiplications with random values.

• large_matmul-baremetal - A large (64-by-64) matrix multiplication with random values. Because
your systolic array will not be 64-by-64 itself, this operation is tiled across multiple smaller matrix
multiplications. This test will run a matrix multiplication on the simulated Rocket CPU, as well
as the same matrix multiplication on the Gemmini accelerator. This simulation may take around
20 minutes to run.

• cifar_quant-baremetal - Classify 4 images (shown in Figure 8) from the CIFAR-10 dataset
using the CNN you quantized in Lab 1. The network should correctly classify two of them, and
incorrectly classify the other two. This simulation may take around 50-60 minutes to run. The
output of this benchmark will also give you a breakdown of cycles between different components
of the CNN.

If any of these tests fail, they will print FAIL. If you’re struggling to debug any of these, then try
reducing the size of your systolic array by changing the meshColumns and meshRows parameters to
smaller numbers like 2, or 4, or 8. You can change these parameters in generators/gemmini/src/main

/scala/gemmini/ConfigsEE290.scala. This may make the waveforms easier for you to understand.
However, eventually, make sure that your Verilog code works for a 8-by-8 array, as this is what it will
be tested with.

If you do change these parameters, make sure to rebuild the software tests by re-running
./build.sh as described above after rebuilding your simulator, because a file called gemmini params.h

in your tests will have been updated with your systolic array’s new parameters.
In your lab report, answer the following questions:

1. How many cycles does the large_matmul-baremetal test report for the CPU and the WS systolic
array? What is the speedup that your accelerator achieves?

2. How many cycles does a CIFAR inference using your quantized CNN take? In which code segment
does it report spending most of the cycles?
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3.6 On-Chip Memory Implications

We would like to examine what is the impact of the on-chip scratchpad size on the performance of the
accelerator. The default Gemmini scratchpad size is 256 KiB (across 4 banks). We have also provided
an additional configuration (GemminiEE290Lab2BigSPRocketConfig) in which the Gemmini scratchpad
size has been set to 2 MiB. Build the new configuration with your mesh implementation (using the make
argument CONFIG=GemminiEE290Lab2BigSPRocketConfig). Make sure to re-build the software
tests, since a new header file was generated with the parameters of the configurations.
Make sure to run your simulation software test with the correct config name. Note that the
software currently does not change the loop-nesting based on the hardware configuration.

In your lab report, answer the following questions:

1. Did the performance change compared to the 256 KiB scratchpad configurations?

2. What are possible reasons for this?

4 Lab Report Structure

Submit a PDF writeup of your responses to the questions in Sections 2 and 3 on Gradescope. Make sure
to include your name and student ID number in the writeup.

Finally, please copy the MeshBlackBox.v file (or any other implementation of the Mesh that your
wrote), including the template code we wrote, and put it in an Appendix. We value code documentation.
The lab report will be considered incomplete without properly commented code.

5 Parting Thoughts

In this lab, we explored dataflow implementation in a systolic-array accelerator using the Gemmini
generators. Systolic-array accelerators have a much broader design space. As you can observe in the
generators/gemmini/src/main/scala/Configs.scala file, the Gemmini generator has several param-
eters that can affect the design space, and impact the system-level performance of the accelerator.

If you’re up for an extra challenge, you could try changing some of the parameters in the config file,
and see the resulting impact on cycle-level performance. Even with simple tests like the bare-metal tests
provided in this lab, you should still see some interesting phenomenon and performance cliffs.

If you’re up for a different challenge for extra credit, you can try exploring the energy implications
of the accelerator design. You can use the open-source ASAP7 PDK and the Hammer flow within the
Chipyard framework to try to run power estimation for your systolic array implementation. For this
exercise, a simple synthesis-based estimation will be sufficient (no need for a full placed and routed
design). Note, you will need access to a synthesis tool to explore this option.

References

[1] Why gemm is at the heart of deep learning. https://petewarden.com/2015/04/20/

why-gemm-is-at-the-heart-of-deep-learning/. Accessed: 2020-01-24.

[2] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer. cudnn:
Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[3] H. Genc, A. Haj-Ali, V. Iyer, A. Amid, H. Mao, J. Wright, C. Schmidt, J. Zhao, A. Ou, M. Banister,
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