Lab 3: Tiling and Optimization for Accelerators

EE 290-2 Hardware for Machine Learning
UC Berkeley, Spring 2020
Instructor: Prof. Sophia Yakun Shao
Teaching Assistants: Alon Amid and Hasan Genc

Contents

1

Introduction

Due: March 6, 2020

1.1 FireSim and Amazon Web Services (AWS) o

Background
2.1 Loop Tiling and Scheduling

2.1.1 Gemmini Loop Nesting

2.2 Gemmini Memory Layout .
2.3 Gemmini Low-Level ISA . .

2.4 Gemmini High-Level Tiled Matmul Functions
2.5 Gemmini Generated Tuning Parameters 0L

Simulation Infrastructure
3.1 Spike ISA Simulator

3.2 FireSim FPGA-Accelerated Simulation

Your Assignment
4.1 Code Optimization
4.2 DNN Inference Performance

Lab Report Structure

Parting Thoughts

12
12
14

16

16

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

1 Introduction

This lab will provide you with hands-on experience on the implications of mapping large matrix multi-
plication operations onto 2D systolic array accelerators, and give you experience using the Amazon Web
Services (AWS) EC2 public cloud for FPGA-accelerated simulation.

As most neural network models do not fit in on-chip memory, loop blocking/tiling is an important
tool in writing a performant neural network implementation. The additional degree of freedom afforded
by the scratchpad in ML accelerators requires further planning of data re-use within the scratchpad.
Furthermore, the size of the compute array adds an additional constraint on the tiling hierarchy.

There is a wide body of literature on loop blocking and scheduling for standard scalar processors.
However, this body of literature is less extensive with regards to on-chip accelerators with dedicated
memories that may be connected to the memory hierarchy in various forms.

Specifically, the DMA of the Gemmini accelerator is currently connected to the shared L2 cache of
the scalar host processor. As such, it may see caching affects from the tiling scheme, as well as other
parts of the program.

In this lab you will continue using the Chipyard and Gemmini platforms from the previous lab to
further improve the performance of DNN execution using ML accelerators through software optimization.
You will also be using the FireSim platform (within Chipyard) on the AWS EC2 public cloud.

1.1 FireSim and Amazon Web Services (AWS)

In order to use FireSim on AWS (you will find additional information about FireSim in the next section),
you will need to open an AWS account. AWS is a paid service, so be careful about your usage
(more details to follow). Do not wait with this process until the last minute, because it might have
around a 1-day latency due to humans-in-the-loop. The lecture on Wednesday, February 26th, will
provide a step-by-step tutorial describing the procedures in this section. We recommend following the
instructions in this page! of the FireSim documentation.

When you are done opening your AWS account, please fill out this form?. After you fill out the form,
you will receve an email from us with a $200 AWS credit promo code. This amount should be more
than sufficient for the tasks in this assignment, assuming you manage you resources and track your AWS
expenses. In addition, you can recieve another promo code of $100 by signing up as a student in AWS
Educate® with your berkeley.edu email address. Do not sign up for the AWS Educate Starter Kit,
because you will not have access to the FPGA-based F1 instances which are required for this lab. You
will need to redeem your AWS promo code credits by following the instructions?.

Once you have opened an AWS account an applied you promo code for credits, follow the initial
FireSim AWS infrastructure setup instructions in this page® of the FireSim documentation. Do not
continue to setting up your manager instance (we will provide you with a prepared manager AMI to
shorten some of the build preparation process).

2 Background

2.1 Loop Tiling and Scheduling

We will be working on tiling matrix multiplication, since Gemmini accelerates matrix multiplication
operations, and we saw in the previous lab that convolutions can be lowered to matrix multiplication
operations. As a reminder, a standard nested-loop matrix multiplication operation looks as follows:

Thttps://docs.fires.im /en/latest /Initial-Setup/First-time- AWS-User-Setup.html

2https://forms.gle/ YLKirgLGpdzpupk59

Shttps://aws.amazon.com/education/awseducate,/

4https://aws.amazon.com/awscredits/

Shttps://docs.fires.im/en/latest /Initial-Setup/Configuring-Required-Infrastructure-in- Your-AWS-Account.html

https://docs.fires.im/en/latest/Initial-Setup/First-time-AWS-User-Setup.html
https://forms.gle/YLKirgLGpdzpupk59
https://aws.amazon.com/education/awseducate/
https://aws.amazon.com/education/awseducate/
https://aws.amazon.com/awscredits/
https://docs.fires.im/en/latest/Initial-Setup/Configuring-Required-Infrastructure-in-Your-AWS-Account.html

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

for (int j = 0; j < DIM_J; j++) {
for (int k = 0; k < DIM_K; k++) {
for (int i = 0; i < DIM_I; i++) {
Outputs([i,j] += Inputs[i,k]*Weightsl[k, j]
}
}
}

An example loop-tiled implementation of this loop will look as follows:

for (int i0 = 0; i0 < DIM_I/TILE_I; iO++) {
for (int jO = 0; jO < DIM_J/TILE_J; jO++) {
for (int kO = 0; kO < DIM_K/TILE_K; kO++) {

for (int j = 0; j < TILE_J; j++) {
for (int k = 0; k < TILE_K; k++) {
for (int i = 0; i < TILE_I; i++) {

Outputs[i0+#TILE_I + i, jO*TILE_J + j] +=
Inputs [i10+#TILE_I + i, kO*TILE_K + k] *
Weights [KO*TILE_K + k, jO*TILE_J + jl

In this example, the size of the tiles/blocks is defined by TILE_I, TILE_J, and TILE_K. The tiled
implementation re-uses the data to the maximal extent within the tile/block, before moving to the next
block which requires communication with memory. The size of the block is usually correlated with the
size of a level of the memory hierarchy. This example represents one level of blocking. In many cases,
there is more that one level of blocking, based on the sizes of register files, buffers, scratchpads and
caches.

2.1.1 Gemmini Loop Nesting

In Gemmini, the dimensions of the systolic array themselves add another implicit level of tiling to the
loop nest. This level is not just temporal, but also spatial, because it happens in parallel across the PEs
of the systolic array, separated by space, rather than being only spread temporally across different time
steps. Let’s suppose that we build Gemmini with a DIMXDIM systolic array. Then our tiled loop would
become:

// Loop-level 3

for (int i0 = 0; i0 < DIM_I/(TILE_I*DIM); iO++) {
for (int jO = 0; jO < DIM_J/(TILE_J*DIM); jO++) {
for (int kO = 0; kO < DIM_K/(TILE_K*DIM); kO++) {

// Loop-level 2

for (int j = 0; j < TILE_J; j++) {
for (int k = 0; k < TILE_K; k++) {
for (int 1 = 0; i < TILE_I; i++) {

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

// Loop-level 1
for (int spatial_j = 0; spatial_j < DIM; spatial_j++) {
for (int spatial_k = 0; spatial_k < DIM; spatial_k++) {
for (int temporal_i = 0; temporal_i < DIM; temporal_i++) {

Outputs[(10*TILE_I + i) * DIM + temporal_i, (jO*TILE_J + j) * DIM + spatial_j] +=
Inputs [(A0#TILE_I + i) * DIM + temporal_i, (kO*TILE_K + k) * DIM + spatial_k] *
Weights [(kO*TILE_K + k) * DIM + spatial_k, (jO*TILE_J + j) * DIM + spatial_j]

i3333gd3,

There isn’t anything you can really do about the innermost loop (Loop-level 1), because it is deter-
mined by the size of the systolic array and the properties of the controller. However, you can change
the size of TILE_I, TILE_J, or TILE K. For example, you can calculate these tiling factors based on the
size of the scratchpad, so that as many DIMxDIM submatrices can be reused as many times as possible
whenever they are loaded into the scratchpad, and before being written back out to main memory to
make space for more input and weight submatrices.

If you wish, you could also add another level of loop tiling above the outermost level shown above,
based on the size of the L2 cache of the SoC (512 MB).

This describes how loop tiling works at a high level, but the following subsections will describe these
loops are actually implemented in your tests.

2.2 Gemmini Memory Layout

Rocket Gemmini Accelerator
RoCC Cmd Controller Transposer
Core
RoCC PTW Dependency Mgmt NI

] DMA Engine RN
L11+D Local TLB || Systolic ||]
[Array][]
Scratchpad OO JO
L2 Bank 0 NI

L]

: [RelU| @D

Bank K Accumulator

DRAM Scaling SRAM

Figure 1: Gemmini Systolic Array Matrix Multiplication Accelerator

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

Asseen in Fig. 1, the scratchpad is made up on K SRAMs. Each row in the SRAMs is DIMXx input_bitwidth
bits wide, where the systolic array is made up of DIMXDIM PEs. Therefore, in this lab assignment, each
SRAM row is 32 bytes wide, because we will be using a 32x32 systolic array this time, instead of the
88 array we used in Lab 2.

The SRAMs are “row-addressed”, which means that if we store one DIMXDIM matrix in address 0,
we can store the next one at address DIM.

If each of the K SRAM banks has BANK_ROWS rows, then addresses 0 through BANK_ROWS—1 would all
be on the first bank, while addresses BANK_ROWS through BANK_ROWSx2 — 1 will be on the second bank,
and so on and so forth. Fach SRAM bank has one read port and one write port, which means that
if we try to perform a matrix multiplication with two matrices that are on the same bank, then our
throughput will be halved. It is thus wise to try to put operands on separate banks if possible, which is
one possible improvement that you will be able to make to the tiled matrix multiplication software.

Finally, as you can see in Fig. 1, Gemmini also includes an “Accumulator SRAM” which is part of
its local memory space, just as the Scratchpad SRAMs are. Every Gemmini local memory space address
is 32-bits wide, but if the MSB is 1, then it will refer to row in the Accumulator SRAM, rather than in
the other scratchpad SRAM banks. When performing matrix multiplications, we will typically write the
results of sub-matrix multiplications (Loop-level 1 shown in Sec. 2.1.1) to the accumulator, where each
row has DIM elements of 32-bits each, rather than 8-bits like the Scratchpad SRAMs. Once our partial
results here have been fully accumulated, we store the results in the accumulator SRAM back into the
L2 cache, but only after scaling them down again to 8-bit elements.

If we perform a matrix multiplication and provide it an output address where the MSB is 1, and
the next most significant bit is 0, then Gemmini will overwrite whatever was in that address previously
with the new output of the systolic array. But if the second most significant bit is 1, instead of 0, then
Gemmini will instead accumulate the new output of the systolic array on top of the existing values in
that address of the accumulator SRAM.

There is also a special address that we refer to as the “garbage address“, where all bits are set to 1.
This is a placeholder address which returns either zeros, or random data, depending on the instruction
that it is used for.

2.3 Gemmini Low-Level ISA

gemmini.h includes numerous low-level macros that are simple wrappers around Gemmini assembly
instructions. Our higher-level tiled matrix multiplication functions are essentially wrapper around these
lower-level macros. In this section, we briefly describe what they do. We will assume that Gemmini is
configured with a DIMXDIM systolic array.

We'll start with instructions that move data from the L2 cache to Gemmini’s scratchpad:

e gemmini_config 1d: This instruction sets the stride of Gemmini’s “move-in” commands. The
stride is the difference in bytes between the L2/DRAM addresses of each row that will be moved-
in from L2 to the scratchpad.

e gemmini mvin: This instruction moves in DIM rows from L2 into an address in the scratchpad or the
accumulator. If the address is in the scratchpad, then each row moved in is DIMX input_bitwidth
bits long. If the address is in the accumulator, then each row moved in is as long as an accumulator
row. Each row moved in is put in consecutive addresses in Gemmini’s local memory.

e gemmini_block mvin: You can use this command to move in several consecutive DIMXDIM matrices
from L2 to the scratchpad, instead of splitting them across different gemmini mvin commands. This
is typically faster.

Next, let’s consider the commands used to “move-out” data from the scratchpad or accumulator to
L2:

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

e gemmini_config st: This instruction sets the stride of Gemmini’s “move-out” commands. The
stride is the difference in bytes between the L2/DRAM addresses of each row that will be moved-out
to L2 from the scratchpad.

e gemmini mvout: This instruction moves in DIM rows from the scratchpad or the accumulator into
an L2/DRAM address. Each row is moved out from consecutive addresses in Gemmini’s local
memory.

Finally, let us consider the commands used to perform matrix multiplications with our systolic array.
With Gemmini, every matmul essentially computes A x B+ D = C. (For this lab, D will always be 0,
so we use the “garbage address” to refer to it.) Due to external limitations, we cannot fit four operands
into one assembly command, and so every matmul command in Gemmini is split into two consecutive
instructions: one to “preload” the systolic array with a B matrix, and one to “compute” the result of
multiplying an A matrix with it afterwards.

The exact commands used are as follows:

e gemmini_config ex: Configures the matrix multiplication commands by setting their dataflow,
activation function, scaling parameters, etc.

e gemmini _preload: Preload a B matrix into the systolic array, and set the output address for the
result, C, of the matmul.

e gemmini_compute_preloaded: Multiply an A matrix with the B that was just preloaded.

e gemmini_compute_accumulated®: Multiply an A matrix with the B matrix that was preloaded
before the preceding “preload” command. This is useful if we want to re-use the same preloaded
B value multiple times.

e gemmini_loop_ws: This performs a loop of preload-compute commands which is unrolled in hard-
ware.

As an example, let’s suppose we want to write code to perform the following low-level operations:

1. Move in Al, A2, and B each of which is a DIMXDIM matrix in L2/DRAM into the scratchpad.

[\

. Multiply A1l by B and store the result in the accumulator.

w

. Multiply A2 by B and add the result to the result of A1xB which is already in the accumulator.
4. Store the result in L2.
To do so, we would run this code:

int8_t A1[DIM] [DIM];
int8_t A2[DIM] [DIM];
int8_t B[DIM] [DIM];
int8_t C[DIM] [DIM]; // C = A1 * B + A2 * B

int Al_sp_addr = O;

int A2_sp_addr = DIM;

int B_sp_addr = DIM*2;

int C_acc_addr = (1 << 31);

gemmini_config_1d(DIM);

6This name was chosen to make sense for the output-stationary dataflow, which you do not touch in this lab. It doesn’t
really have anything to do with accumulations for weight-stationary dataflows.

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

gemmini_mvin(Al, Al_sp_addr);
gemmini_mvin(A2, A2_sp_addr);
gemmini_mvin(B, B_sp_addr);

gemmini_config_ex (WEIGHT_STATIONARY, NO_ACTIVATION, O, O, 0);

// C=A1 xB
gemmini_preload(B_sp_addr, C_acc_addr);
gemmini_compute_preloaded(Al_sp_addr, GARBAGE_ADDR);

// C += A2 x B
gemmini_preload (GARBAGE_ADDR, C_acc_addr | (1 << 30));
gemmini_compute_accumulated(A2_sp_addr, GARBAGE_ADDR);

gemmini_config_st(DIM);
gemmini_mvout(C, C_acc_addr);

2.4 Gemmini High-Level Tiled Matmul Functions

gemmini.h provides higher-level functions that wrap around these to perform tiled matrix multiplica-
tions. One of these functions operates on hardcoded tiling factors, while the other one computes tiling
factors at runtime.

First, we describe the tiled_matmul function:

void tiled_matmul(size_t dim_I, size_t dim_J, size_t dim_K,
const elem_t A[dim_I][dim_K], const elem_t B[dim_K] [dim_J],
const acc_t * D, elem_t C[dim_I][dim_J],
int act, int shift, bool repeating_bias,
size_t tile_I, size_t tile_J, size_t tile_K,
enum tiled_matmul_type_t tiled_matmul_type) ;

The arguments to this function can be described as follows:

e dim_*: The dimensions of the A, B, D, and C matrices.

e A, B: The multiplicands, used to compute C = Ax B+ D.

e D: The bias, used to compute C' = A «* B4+ D. If D is NULL, then the bias is 0.

e C: The buffer in which to store the result of C = A B+ D.

e act: The activation function to use. For this lab, this will always be NO_LACTIVATION or RELU.

e shift: The number of bits to right-shift the result in the accumulator by before saturating and
casting to 8-bits. This is essentially how we scale 32-bit accumulated results back into 8-bits.

e repeating bias: When doing im2col, the bias matrix of a convolution will have the same elements
in each row, which increases data duplication significantly. If this parameter is set to true, then
Gemmini will simply re-read the first row of the bias each time, rather than reading new rows from
the L2 cache which would waste bandwidth.

e tile_x: The tiling factors, as described in Sec. 2.1.1.

e tiled matmul _type: This will be 0S (output-stationary), WS (weight-stationary), or CPU (runs on
the CPU instead of on Gemmini).

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

Then, there is the tiled matmul_auto function, which simply wraps around tiled matmul but cal-
culates the tiling factors at runtime.

In gemmini nn.h, there are also two functions, tiled matmul nn and tiled matmul nn_auto which
wrap around tiled matmul and tiled matmul_auto in gemmini.h respectively. These functions all have
the exact same parameters, except that the *_nn versions also include a parameter, called check, that
will run the CPU version of the matmul command at the same time to make sure that the output is
exactly the same. This can be useful for debugging purposes.

You can think of tiled matmul as corresponding to Loop-level 3 in Sec. 2.1.1. It determines which
elements in L2/DRAM need to be moved into the scratchpad, computed on, and written back to DRAM
as a matmul product. There is an inner function inside of it called sp_tiled matmul _ws, corresponding
to Loop-level 2, which actually moves those elements from DRAM into the scratchpad, runs the necessary
“preload-compute” instructions, and writes the result back. That function is defined as follows:

static void sp_tiled_matmul_ws(const elem_t * A, const elem_t * B,
const acc_t *x D, elem_t * C,
size_t I, size_t J, size_t K, size_t A_row_len,
size_t B_row_len, size_t D_row_len, size_t C_row_len,
bool no_bias, bool repeating_bias);

As you can see, the arguments here are very similar to the last one. The main differences are as
follow:

e D: If D is NULL, then Gemmini will accumulate the results of its matrix multiplications on top of
whatever was already in the accumulator. Otherwise, if D s not NULL, then Gemmini will overwrite
what was already in the accumulator. If no_bias is false, then Gemmini will overwrite it with D,
otherwise, Gemmini will simply overwrite it with the output of the systolic array, since D can be
simply considered to be a 0 matrix in this case.

e C: If C is NULL, then the results will remain in the accumulator for this iteration, because they
still need to be accumlated to their final value. Otherwise, they will be written out to whichever
L2/DRAM address C points to.

Inside of sp_tiled_matmul_ws, each pair of “preload-compute” instructions corresponds to Loop-
level 1.
Using these functions, we can rewrite the tiled loop in Sec. 2.1.1 as follows:

static void tiled_matmul(size_t dim_I, size_t dim_J, size_t dim_K,
const elem_t A[dim_I][dim_K], const elem_t B[dim_K] [dim_J],
const acc_t * D, elem_t C[dim_I][dim_J],
size_t tile_I, size_t tile_J, size_t tile_K,
int act, int shift, bool repeating_bias) {

// Loop-level 3
for (int i0 = 0; i0 < DIM_I/TILE_I; iO++) {
for (int jO = 0; jO < DIM_J/TILE_J; jo++) {
for (int kO = 0; kO < DIM_K/TILE_K; kO++) {

const acc_t * pre;

if (k0 !'=0) {
pre = NULL;

} else {
size_t bias_row = repeating bias 7 O : i0xtile_Ix*DIM;
pre = &((acc_t (%) [dim_J])D) [bias_row] [jO*tile_J*DIM] ;

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

}
elem_t * out = kO == KO-1 7 &C[iO*tile_I*DIM] [jO*tile_J*DIM] : NULL;

// Loop-level 2
sp_tiled_matmul_ws(&A[iO*tile_I#DIM] [kO*tile_K*DIM],
&B[kOxtile_K+DIM] [jOxtile_J*DIM],
pre, out,
tile_I, tile_J, tile_K,
dim_K, dim_J, dim_J, dim_J,
no_bias, repeating_bias);

// Loop-level 1 happens inside of "sp_tiled_matmul_ws", and corresponds
// to a pair of "preload-compute" instructions.

33

The actual code is a little more complicated, to handle cases where tile_I is not divisible by dim_I,
for example, but this is basically what it does.

2.5 Gemmini Generated Tuning Parameters

During elaboration, the Gemmini generator automatically generates a C header file named gemmini_params.h
with tuning parameter definitions based on the hardware configuration that was selected. For example:

#define DIM 32

#define BANK_NUM 4
#define BANK_ROWS 2048
#define ACC_ROWS 512

typedef int8_t elem_t;
typedef int32_t acc_t;

These parameters include the size of the systolic array, the size of the scratchpad, the size of the
accumulator SRAM, the input types (elem_t), and the bitwidth of the accumulated partial sums (acc_t).
These constants can be used when implementing loop tiling schemes for performance optimization.

From these parameters, we can see that the total number of addressable rows in the scratchpad is
BANK_NUMxBANK_ROWS which equals 8192, which corresponds to 8192xDIMxsizeof (elem_t) /1024 =
256 kilobytes. There is only ever one accumulator bank, so the total number of addressable rows in
the accumulator is simply ACC_ROWS, which equals 512 rows, or 512xDIMxsizeof (acc_t) /1024 = 64
kilobytes.

In this lab, we are going to work with a 32x32 systolic array, which is more representative of
accelerators in edge applications (as oppposed to the 8x8 array that was used to test Lab 2).

3 Simulation Infrastructure

3.1 Spike ISA Simulator

In Lab 2, your assignment was to write hardware components, and you were provided with software tests.
In contrast, in this lab, you are provided with the hardware simulation, and you are writing software
components. Naturally, your initial implementation might have some bugs in it. While it is possible
to debug the software using the hardware simulation, that will usually result in a long debugging cycle
(since simulation is slow). An alternative approach is to use a higher level of abstraction, by using a
functional simulator (instead of a detailed performance-accurate simulation). Gemmini has a functional

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

model implemented in the non-standard version of the Spike ISA simluator. The Spike ISA simulator
was originally used as a “golden model” for the RISC-V ISA. As a functional simulator, in Spike every
instruction takes only 1 cycle to execute (no matter how complicated the instruction is, or whether it
should have memory latency).

A binary of the Spike simulator is located in the software development tools that you get when
you source /home/ff/ee290-2/chipyard-env.sh in Chipyard. Spike should be on your path after you
source this file, so in order to run a software binary in Spike, you should just need to run the following
command:

spike --extension=gemmini <path/to/software/binary>

Spike has various visibility features that may help you while debugging your software implemen-
tations. You can read about most of these features in https://github.com/ucb-bar/esp-isa-sim/
#interactive-debug-mode

You are also provided with a special version of Spike, which includes additional details about the func-
tional simulation of the Gemmini functional model. In order to enable this version of spike, you will need
to source the /home/ff/ee290-2/chipyard-debug-env. sh file instead of /home/ff/ee290-2/chipyard-env.sh.
This version generates many print statements, so we recommend using it only when neccessary. This
version is identical to the regular Spike version (command line options, flags, etc.), with the addition of
these print statements.

source /home/ff/ee290-2/chipyard-debug-env.sh
spike --extension=gemmini <path/to/software/binary>

3.2 FireSim FPGA-Accelerated Simulation

FireSim is an FPGA-accelerated cycle-exact simulation platform which uses FPGAs on the AWS EC2
public cloud. In contrast to software RTL simulation, FPGA-accelerated simulation enables us to run
long workloads (billions-trillions of cycles) within reasonable wall-clock time. Running these work-
loads in software RTL simulation would take many hours/days/weeks. In contrast to standard FPGA
prototyping, FireSim’s simulation maintains cycle accurate timing behavior of the entire system (in-
cluding memory and peripherals). For example, the simulations you are going to run in this lab
are going to use a timing-accurate DDR3 memory model. Additional information about FireSim
can be found on the FireSim website (https://fires.im/) and in the FireSim documentation at
https://docs.fires.im/en/latest/.

FireSim is included as part of the Chipyard framework, which we used in Lab 2. FireSim is located
in the sims/firesim directory of Chipyard. You will use FireSim in this lab in order to evaluate the
performance of real DNN models on the Gemmini accelerator RTL using simulations which take billions
of cycles to run.

The remainder of this section will guide you through setting up a FireSim manager
instance for this assignment, which you will use for the second half of the assignment. We
recommend going through this part of the setup of the manager instance only after you
completed the first part of the assignment (on the local eda machines), since this will help
conserve AWS resources while your instance is not in active use.

FireSim uses a central manager instance in order to manage its operations on AWS. In order to set
up your FireSim manager instance, head to the EC2 Management Console. In the top right corner,
ensure that the correct region is selected.

To launch a manager instance, follow these steps:

1. From the main page of the EC2 Management Console, click Launch Instance. We use an on-
demand instance here, so that your data is preserved when you stop/start the instance, and your
data is not lost when pricing spikes on the spot market.

10

https://github.com/ucb-bar/esp-isa-sim/#interactive-debug-mode
https://github.com/ucb-bar/esp-isa-sim/#interactive-debug-mode
https://fires.im/
https://docs.fires.im/en/latest/
https://console.aws.amazon.com/ec2/v2/home

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

2. When prompted to select an AMI, search for the following AMI name: Berkeley EE290-2 FireSim
Manager AMI - Spring 2020. If you have completed the form in the the introduction section, and
recieved an AWS promocode from us, it should appear in the “My AMIs” section (we are sharing
this AMI manually with you, since there are limitations on public AMIs in AWS. If more than
a day has passed since you completed the form in the introduction section and the AMI doesn’t
appear in your , please email us). **DO NOT USE ANY OTHER VERSION.**7,

3. When prompted to choose an instance type, select the instance type of your choosing. A good
choice is a r5.1large.

4. On the “Configure Instance Details” page, first make sure that the firesim VPC is selected in
the drop-down box next to “Network”. Any subnet within the firesim VPC is fine. Additionally,
check the box for “Protect against accidental termination.” This adds a layer of protection to
prevent your manager instance from being terminated by accident. You will need to disable this
setting before being able to terminate the instance using usual methods.

5. You can skip the “Add Tags” page.

6. On the “Configure Security Group” page, select the “firesim * security group that was automatically
created for you earlier.

7. On the review page, click the button to launch your instance. Make sure you select the firesim
key pair that we setup earlier.

Note: once the instances was launched, your AWS account is charged for its use. You
should “stop” your manager instance when you are not using it for more than a few hours—
especially at night. This will make sure your allocated AWS credits will suffice for this
lab.

FireSim recommends using mosh instead of ssh, or using ssh with a screen/tmux session running
on your manager instance to ensure that long-running jobs are not killed by a bad network connection
to your manager instance. In either case, ssh (or mosh) into your instance (e.g. ssh -i firesim.pem
centos@YOUR_INSTANCE_IP). Now that the manager instance is started, copy the private key that you
downloaded from AWS earlier when you set up the intrastructure (firesim.pem) to /firesim.pem on
your manager instance. This step is required to give the manager access to the instances it launches for
you.

Go into the firesim directory in chipyard/sims/firesim on the manager instance, and source the
sourceme-f1-manager.sh file.

$ source sourceme-fl-manager.sh
Finally, run the firesim managerinit command.
$ firesim managerinit

This will first prompt you to setup AWS credentials on the instance, which allows the manager
to automatically manage build/simulation nodes (these are the same credentials you entered in the
infrastructure setup section with the aws configure command (choose the us-east-1 region, and json
default output format).

Next, it will create initial configuration files we will use. Finally, it will prompt you for an email
address, which is used to send email notifications upon FPGA build completion and optionally for
workload completion. You can leave this blank if you do not wish to receive any notifications.

"This is a version of the Amazon FPGA Developers AMI version 1.6 in which we have pre-installed Chipyard, FireSim,
the software toolchain, and other dependancies and configurations found on the ee290 branch of Chipyard, in order to save
you time

11

https://mosh.org/

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

You are now done with setting up your manager instance. You can continue on the executing
simulations, or stop the instance in order to reduce the charges it inccurs. Note the difference between
terminating an instance, and stopping an instance.

4 Your Assignment

In this lab, we will continue working with the Gemmini matrix multiplication accelerator. However, this
time we will focus of the software aspects of it rather than the hardware aspects.

In Lab 2, you tested the correctness of your implementation using pre-written benchmark tests. The
goal of this lab will be to optimize these simple tests, as well as more complex neural networks to achieve
higher performance.

Additionally, in this lab we are going to work with a 32x 32 systolic array, which is more representative
of accelerators in edge devices (as opposed to the 8x8 array that was used to test Lab 2).

This lab will consist of two parts:

e Code optimization and evaluation on small benchmarks using Spike and software RTL simulation.

e Large scale performance testing on full DNNs using the FireSim FPGA-accelerated simulation
plarform.

In order to decouple this lab from the success or quality of your implementation in Lab 2, we
have updated the Chipyard repository (and its submodules) with a Chisel Mesh implementation and
several additional updates. To use the correct, reference implementation, uncomment everything in
generators/gemmini/src/main/scala/gemmini/C-Mesh.scala, and comment everything in generators/
gemmini/src/main/scala/gemmini/Mesh.scala.

For your local work on the eda machines for the first part of this lab, while you can pull and recursively
update the submodules, we would recommend to just re-clone and initialize the repository on the eda
machines in that same way as instructed in the introduction of Lab 2. For the second part of this lab
you will use EC2 instances with prepared images in which the repository has already been clone and
prepared.

4.1 Code Optimization

Your assignment is to optimize the matrix multiplication implementation used by Gemmini by improving
its tiling and scheduling.

You will try to optimize the functions described in Sec. 2.4. The implementation of these functions
can be found in the generators/gemmini/software/gemmini-rocc-tests/include/gemmini.h file.

To keep things simple, we recommend focusing primarily on the tiled matmul_auto function (al-
though you are allowed to modify any of the functions in the file if you choose to). This function can be
optimized and improved by calculating better tiling factors, as it currently uses 1-by-1-by-1 tiling factors
for everything (as you might have noticed in Lab 2 when a larger scratchpad did not improve inference
time for your CNN).

As mentioned previously, you will use a 32x32 systolic array, instead of the 8x8 systolic array you
implemented in Lab 2. With a 32x32 systolic array, the peak theoretical performance should be 1024
MACs/cycle (or 2048 OPs/cycle). We do not expect you to reach the peak theoretical performance, but
it can be used as an estimate of how much you have improved from the baseline implementation, and
how far you are from the theoretical peak.

The hardware configuration you will use in this lab are called GemminiEE290Lab3RocketConfig
(instead of the GemminiEE290Lab2RocketConfig you worked with in Lab 2). You should build the
VCS simulator for this configuration in a similar fashion to Lab 2. In this part of the assignment, you
will test the performance of your implementation using the same benchmarks you used in Lab 2. In

12

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

order to re-build the software benchmarks using your new matrix multiplication implementation, go into
generators/gemmini/software/gemmini-rocc-tests/ and re-run build. sh.

As mentioned in the background section of this lab, if your benchmark tests are not passing in software
RTL simulation, it might be useful to run your software implementation on the Spike functional model
to debug that software implementation’s functionality.

Some hints to your optimization method:

Start by using the BANK_NUM, BANK_ROWS, and ACC_ROWS parameters to calculate tiling factors for
the loops based on the scratchpad size in tiled_matmul_auto. Think about the data-movement
and maximum re-use within the scratchpad.

In sp_tiled_matmul_ws, the B submatrices are stored directly after the A submatrices (as you
can see by looking at the B_sp_addr_start variable). This increases the chances that they will be
on the same bank, reducing throughput. Can you calculate a different starting address for the B
submatrices which minimizes the chances of A and B sharing scratchpad banks?

Consider adding an additional level of loop tiling based on the L2 cache size (there is no auto-
matically generated parameter for this size, so you will need to manually estimate it, or use some
auto-tuning method).

In the large-matrix-multiplication, MLP, and CNN tests, we always use functions which automat-
ically calculate the tiling factors are runtime. If you wish, you may replace these with function
calls where you use hardcode tiling factors that you have precomputed.

If you have any other ideas, then feel free to change any part of the code, such as by changing the
ordering of the loops, or anything else. Feel free to ask about new ideas you might have on Piazza
or in office hours.

In this part of the assignment, your implementation will be evaluated on the following benchmarks:

large_matmul_without_cpu: A 64x64 tiled matrix multiplication, as in Lab 2, but without CPU
code running to check the result.

very_large_matmul: A 256x544 matrix multiplied by a 544 x256 matrix. By default, this will not
run any CPU code to check the result, but if you wish, you may change the CHECK_RESULT macro
in very_large_matmul.c to 1 if you want to check the result.

cifar_quant: Run inference on a batch of 4 CIFAR-10 images, using LeNet.

In your lab report, answer the following questions

1.

Write down the speedup you achieved on each benchmark compared to the baseline implementation.
How close is it to the theoretical peak? For the cifar_quant test, use the total number of cycles
spent, rather than just the matrix multiplication cycles, when calculating how close you are to the
theoretical peak.

. Which optimization techniques did you use to achieve this speedup? How much did each technique

contribute to the speedup?

Note that the first two benchmarks evaluate your optimization of matrix multiplication, while the
last benchmark (LeNet on CIFAR) evaluates a CNN. Do you notice a difference in speedup between
the different benchmarks? Which benchmark demonstrated the least improvement? What is the
reason for that?

13

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

4.2 DNN Inference Performance

In this part of the assignment, you will test the performance of your implemenetation on larger DNN
models using the FireSim FPGA-accelerated simulation platform. We could use the standard software
RTL simulation we used in the previous part of this lab for these benchmarks as well, but it would take
many hours to simulate every benchmark.

In this part of the assignment, your implementation will be evaluated on the following benchmarks:

e mobilenet: Run inference of a batch of 4 ImageNet images, using MobileNetV2.
e resnet50: Run inference of a batch of 4 ImageNet images, using ResNet50.

e mlpl: Run a multi-layer perceptron detecting handwritten digits®. This test uses random weights
and doesn’t actually check the final result, unlike the CNNs.

e mlp2: Run a multi-layer perceptron also detecting digits®. This test uses random weights and
doesn’t actually check the final result, unlike the CNNs.

Log in to your FireSim manager instance. FireSim has a particular environment file that needs to
be sourced every time you open a new terminal session:

cd sims/firesim/
source sourceme-fl-manager.sh

Copy your implementation of gemmini.h (and any additional code you wrote) into the equivalent
directory on your FireSim manager instance'?.

Now, we can prepare a Linux image with your optimized software implementation. We will do that
using the FireMarshal'! workload management system.

While a Linux image is not strictly necessary for these workloads, it makes interaction with FireSim
somewhat simpler. While it is possible to run bare-metal tests (i.e., not in a Linux environment) on a
FireSim simulation, it is much more conveinent to batch all the tests together into a Linux images with
some scripts. Before doing this, make sure that your gemmini_params.h file makes sense for the build
you are working on. We have wrapped the relevant FireMarshal commands in a convenience script that
will build and install your simulated Linux image (this should take 2-6 minutes):

cd ../../generators/gemmini/software
./build-ee290-firesim-workload.sh

We have already prepared an FPGA image for you, with a 32x32 systolic array, with a scratchpad of
256 KiB, and 64 KiB accumulators. The detail of these FPGA images can be found in several FireSim
configuration files we have put in the /generators/gemmini/software/firesim-configs directory.
These configuraiton files will provide information for FireSim in the following steps.

To run a simulation, we will start by launching a FireSim simulation runfarm (an AWS f1.2xlarge
instance with an FPGA):

firesim launchrunfarm --runtimeconfigfile /home/centos/chipyard/generators/gemmini/
software/firesim-configs/config _runtime_ee290.ini --hwdbconfigfile /home/centos/
chipyard/generators/gemmini/software/firesim-configs/config_hwdb.ini

Next, we will prepare the simulation by copying the simulation infrastructure to the runfarm, and
flash the FPGAs:

8D. Claudiu Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep big simple neural nets excel on
handwritten digit recognition,” arXw preprint arXiv:1003.0358, 2010.

9U. Meier, D. C. Ciresan, L. M. Gambardella, and J. Schmidhuber, “Better digit recognition with a committee of simple
neural nets,” in 2011 International Conference on Document Analysis and Recognition, pp. 1250-1254, IEEE, 2011.

10Tn a standard FireSim developement flow, you would maintain a Chipyard fork that can be synced between your local
development repository and the repository on the FireSim manager instance

HFireMarshal details and documentaiton can be found in https://firemarshal.readthedocs.io/

14

https://firemarshal.readthedocs.io/

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

firesim infrasetup --runtimeconfigfile /home/centos/chipyard/generators/gemmini/
software/firesim-configs/config_runtime_ee290.ini --hwdbconfigfile /home/centos/
chipyard/generators/gemmini/software/firesim-configs/config_hwdb.ini

This step should take 1-2 minutes (unless, for some reason, you have editted some scala files, in which
case FireSim will attempt to elaborate a design for scratch. However, this design might not match the
FPGA image we have prepared for you, so this is probably not great).

Finally, we will start the simulation:

firesim runworkload --runtimeconfigfile /home/centos/chipyard/generators/gemmini/
software/firesim-configs/config runtime_ee290.ini --hwdbconfigfile /home/centos/
chipyard/generators/gemmini/software/firesim-configs/config_hwdb.ini

You will now get a monitor screen which shows you details about your simulation under execution.
If everything is ok, your simulation should finish executing within 10-15 minutes. If you want to see the
progress of the execution of the simulation, you can ssh into the simulation host from a new terminal
session:

ssh <IP address in that appears in the monitor>
screen -r fsim0

This will attach to the simulated console so you can view the progress of your simulated program.
To exit screen, you can use ctrl-a ctrl-d key sequence. The majority of time will likely be spent in
an inital stage of "zeroing FPGA DRAM”. Don’t worry about this.

The final output of your simulation will appear in the sims/firesim/deploy/results-workload
directory. Each time you run a simulation, a new results directory will be created here with a unique
timestamp identifier. Within this results directory, you will find an output file called uartlog which
will have the uart output of your simulation. The output of the simulation will print the results you
need in order to analyze the performance of the DNN models execution of your optimized software
implementation.

Have a look at the execution performance of inference using these complete DNN models using your
optimized software, and answer the following questions in your report:

1. For each DNN model, how much did the optimization of matrix multiplication impact the overall
execution time of the full DNN? (Don’t forget to run measurements on FireSim of the baseline
non-optimized software).

2. Are there certain DNN types (CNN, MLP, etc.) that exhibited better speedups as a result of the
optimization? If so, what are likely reasons?

3. Amdahl’s law is a useful tool in estimating the potential speedup of a workload as a result of
the acceleration of a specific component. In our case, the component we accelerated is matrix
multiplication. Based on the speedup of a single matrix multiplication that you calculated in
previous parts of the assignment, and the overall speedup of the DNN models you observed in this
part of the assignment, can you estimate what is the percentage of the overall DNN model which
is made of matrix multiplication?

We will now evaluate whether your tiling scheme is flexible across different scratchpad sizes. We
have provided an additional gemmini parameter header file called gemmini_params_ee290_smallsp.h.
Replace gemmini_params.h with this new parameter configuration, and rebuild the Linux image:

cd ../../generators/gemmini/software

cp gemmini-rocc-tests/include/gemmini_params_ee290_smallsp.h gemmini-rocc-tests/
include/gemmini_params.h

./build-ee290-firesim-workload.sh

15

EE 290-2 Spring 2020 Lab 3: Tiling and Optimization for Accelerators

Now, repeat the procedure for running the FireSim simulation, but instead of using the config runtime_ee290.ini
FireSim configuration file, use the config runtime_ee290_smallsp.ini configuration file. This will use
an FPGA image in which Gemmini has only a 128 KiB scratchpad and 32 KiB accumulators (in contrast
to the 256 KiB scratchpad and 64 KiB accumulator we have worked with until now).

Answer the following questions based on the results of your simulation with a smaller scratchpad:

1. What performance improvement (compared to the baseline software implementation) do you see
on the various DNNs with the accelerator with the smaller memory (128 KiB scratchpad, 32 KiB
accumulators)? How does this compare to the performance improvement you observed with the
larger memory (256 KiB scratchpad, 64 KiB accumulators)

2. What can you learn about your software tiling implementation or about the accelerator for the
performance of the accelerator with a larger memory and a smaller memory? (hint: think about
memory and compute boundness, roofline models, the portability of your tiling scheme, etc.)

When you are done with the lab, remember to stop your manager instance. We also recommend
verifying in the AWS management console that you do not have any other instances running. At the
end of the course, we recommend terminating your manager instance in order to not incur
any additional AWS charges.

5 Lab Report Structure

Submit a PDF writeup of your responses to the questions in Sections 2 and 4 on Gradescope. Make sure
to include your name and student ID number in the writeup. Copy the output results of your simulations
(with the cycle count breakdown). Finally, please copy the gemmini.h file (or any other code that you
wrote), including the template code we wrote, and put it in an Appendix. Please highlight the code
segments that you edited/wrote. We value code documentation. The lab report will be considered
incomplete without properly commented code.

6 Parting Thoughts

In this lab, we explored mapping a matrix multiplication operation (and higher level DNN) onto an
accelerator with limited arrays size and scratchpad size.

If you’re up for an extra challenge, think about the implications of this type of mapping in a multi-core
(and multi-accelerator) SoC. Many of the recent ML accelerators presented by commercial companies are
composed of multiple symmetric tiles, each of which has a scalar processor, a vector procesor, and a 2D
processor with some form of local memory (in some way - similar to a Rocket+Gemmini configuration).
Scheduling tasks across these tiles adds an additional level of complexity to the mapping problem.

This can be done “automatically” using common shared-memory parallel processing libraries such
as OpenMP, or more manually using thread pinning an static memory management.

16

	Introduction
	FireSim and Amazon Web Services (AWS)

	Background
	Loop Tiling and Scheduling
	Gemmini Loop Nesting

	Gemmini Memory Layout
	Gemmini Low-Level ISA
	Gemmini High-Level Tiled Matmul Functions
	Gemmini Generated Tuning Parameters

	Simulation Infrastructure
	Spike ISA Simulator
	FireSim FPGA-Accelerated Simulation

	Your Assignment
	Code Optimization
	DNN Inference Performance

	Lab Report Structure
	Parting Thoughts

