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Bayes NetsBayes Nets

 Representation of probabilistic informationRepresentation of probabilistic information
– reasoning with uncertaintyreasoning with uncertainty

 Example tasksExample tasks
– Diagnose a disease from symptomsDiagnose a disease from symptoms
– Predict real-world information from noisy Predict real-world information from noisy 

sensorssensors
– Process speechProcess speech
– Parse natural languageParse natural language



This lectureThis lecture

 Basic probabilityBasic probability
– distributionsdistributions
– conditional distributionsconditional distributions
– Bayes' ruleBayes' rule

 Bayes netsBayes nets
– representationrepresentation
– independenceindependence
– algorithmsalgorithms
– specific types of netsspecific types of nets

 Markov chains, HMMsMarkov chains, HMMs



ProbabilityProbability

 Random VariablesRandom Variables
– Boolean/DiscreteBoolean/Discrete

 True/falseTrue/false
 Cloudy/rainy/sunnyCloudy/rainy/sunny
 e.g. die roll, coin flipe.g. die roll, coin flip

– ContinuousContinuous
 [0,1] (i.e. 0.0 <= x <= 1.0)[0,1] (i.e. 0.0 <= x <= 1.0)
 e.g. thrown dart position, amount of rainfalle.g. thrown dart position, amount of rainfall



Unconditional ProbabilityUnconditional Probability

 Probability DistributionProbability Distribution
– In absence of any other infoIn absence of any other info
– Sums to 1Sums to 1
– for discrete variable, it's a tablefor discrete variable, it's a table
– E.g. E.g. P(Sunny) = .65  (thus, P(Sunny) = .65  (thus, P(¬Sunny) = .35)P(¬Sunny) = .35)
– for discrete variables, it's a tablefor discrete variables, it's a table

Weather sunny cloudy rainy snowy
P(Weather) 0.65 0.19 0.14 0.02

Die 1 2 3 4 5 6
P(Die) 1/6 1/6 1/6 1/6 1/6 1/6



Continuous ProbabilityContinuous Probability

 Probability Density FunctionProbability Density Function
– Continuous variablesContinuous variables
– E.g. Uniform, Gaussian, Poisson…E.g. Uniform, Gaussian, Poisson…



Joint ProbabilityJoint Probability

 Probability of several variables being set at the same timeProbability of several variables being set at the same time

– e.g. P(Weather,Season)e.g. P(Weather,Season)
 Still sums to 1Still sums to 1
 2-D table2-D table
 P(Weather, Season)P(Weather, Season)

 Full Joint is a joint of all variables in modelFull Joint is a joint of all variables in model
 Can get “marginal” of one variableCan get “marginal” of one variable

– sum over the ones we don't care aboutsum over the ones we don't care about

sunny cloudy rainy snowy
summer 0.45 0.04 0.01 0 0.5

winter 0.2 0.15 0.13 0.02 0.5
0.65 0.19 0.14 0.02 1



Conditional ProbabilityConditional Probability

 P(Y | X) is probability of Y given that all P(Y | X) is probability of Y given that all 
we know is the value of Xwe know is the value of X
– E.g. P(cavity | toothache) = .8E.g. P(cavity | toothache) = .8

 thus P(thus P(¬cavity | toothache) = .2¬cavity | toothache) = .2

 Product RuleProduct Rule
– P(X, Y) = P(Y | X) P(X)P(X, Y) = P(Y | X) P(X)
– P(Y | X) = P(X, Y) / P(X)P(Y | X) = P(X, Y) / P(X) ((normalizer normalizer to add up to 1to add up to 1))

Y X



Conditional Probability Conditional Probability 
ExampleExample

 P(disease=true) = 0.001 ; P(disease=false) = 0.999P(disease=true) = 0.001 ; P(disease=false) = 0.999
 test 99% accurate:test 99% accurate:

 Compute joint probabilitiesCompute joint probabilities
– P(test=positive, disease=true) = 0.001 * 0.99 = 0.00099P(test=positive, disease=true) = 0.001 * 0.99 = 0.00099

– P(test=positive, disease=false) = 0.999 * 0.01 = 0.00999P(test=positive, disease=false) = 0.999 * 0.01 = 0.00999

– P(test=positive) = 0.00099 + 0.00999 = 0.01098P(test=positive) = 0.00099 + 0.00999 = 0.01098

P(test | disease) true false
positive 0.99 0.01
negative 0.01 0.99



Bayes' RuleBayes' Rule

 Result of product ruleResult of product rule
– P(X, Y) = P(Y | X) P(X)P(X, Y) = P(Y | X) P(X)

             = P(X | Y) P(Y)             = P(X | Y) P(Y)

 P(X | Y) = P(Y | X) P(X) / P(Y)P(X | Y) = P(Y | X) P(X) / P(Y)

 P(disease | test) = P(test | disease) * P(disease | test) = P(test | disease) *                   
                              P(disease) / P(test)                              P(disease) / P(test)



Conditional Probability Conditional Probability 
Example (Revisited)Example (Revisited)

 P(disease=true) = 0.001 ; P(disease=false) = 0.999P(disease=true) = 0.001 ; P(disease=false) = 0.999
 test 99% accurate:test 99% accurate:

 P(disease=true | test=positive)P(disease=true | test=positive)
      = P(disease=true, test=positive) / P(test=positive)      = P(disease=true, test=positive) / P(test=positive)

             = 0.00099 / 0.01098 = 0.0901 = 9%= 0.00099 / 0.01098 = 0.0901 = 9%

P(test | disease) true false
positive 0.99 0.01
negative 0.01 0.99



Important equationsImportant equations

 P(X,Y) = P(X | Y) P(Y)P(X,Y) = P(X | Y) P(Y)
            = P(Y | X) P(X)            = P(Y | X) P(X)

 P(Y | X) = P(X | Y) P(Y) / P(X)P(Y | X) = P(X | Y) P(Y) / P(X)

 Chain Rule of ProbabilityChain Rule of Probability
P(xP(x11,x,x22,x,x33,…,x,…,xkk) = ) = 

P(xP(x11)P(x)P(x22|x|x11)P(x)P(x33|x|x11,x,x22)…P(x)…P(xkk|x|x11,x,x22,…,x,…,xk-1k-1))
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Bayes NetsBayes Nets

Disease

Test result

P(disease) probability
TRUE 0.001
FALSE 0.999

P(test | disease) true false
positive 0.99 0.01
negative 0.01 0.99



Causal reasoningCausal reasoning

Disease

Test result

Disease

Test result

≠



Causal reasoningCausal reasoning

Disease

Test result

 not just probabilistic not just probabilistic 
reasoningreasoning

 causal reasoningcausal reasoning
– arrow direction has arrow direction has 

important meaningimportant meaning

 manipulating manipulating 
causes changes causes changes 
outcomesoutcomes

 manipulating manipulating 
outcomes does not outcomes does not 
change causeschange causes



Bayes NetsBayes Nets

Disease

Test result

 Shaded means Shaded means 
observedobserved
– we know the value we know the value 

of the variableof the variable
– then we calculate then we calculate 

P(net | observed)P(net | observed)



Example: Markov ChainExample: Markov Chain

 Joint probability = P(A,B,C,D)Joint probability = P(A,B,C,D)

= P(A)P(B|A)P(C|A,B)P(D|A,B,C)= P(A)P(B|A)P(C|A,B)P(D|A,B,C) (by C.R.)(by C.R.)

A B C D



Example: Markov ChainExample: Markov Chain

 Joint probability = P(A,B,C,D)Joint probability = P(A,B,C,D)

= P(A)P(B|A)P(C|A,B)P(D|A,B,C)= P(A)P(B|A)P(C|A,B)P(D|A,B,C) (by C.R.)(by C.R.)

A B C D

P(D|A,B,C) = P(D|C)P(D|A,B,C) = P(D|C)



Example: Markov ChainExample: Markov Chain

 Joint probability = P(A,B,C,D)Joint probability = P(A,B,C,D)

= P(A)P(B|A)P(C|A,B)P(D|A,B,C)= P(A)P(B|A)P(C|A,B)P(D|A,B,C) (by C.R.)(by C.R.)

A B C D

= P(A)P(B|A)P(C|B)P(D|C)= P(A)P(B|A)P(C|B)P(D|C)



Example: Markov ChainExample: Markov Chain

 Joint probability = Joint probability = P(A)P(B|A)P(C|B)P(D|C)P(A)P(B|A)P(C|B)P(D|C)

A B C D

P A=∑B∑C∑D
P A P B∣A P C∣B P D∣C 

P A= P A∑B
P B∣A∑C

P C∣B ∑D
P D∣C 

P A= P A∑B
P B∣A∑C

P C∣B

P A= P A∑B
P B∣A

P A= P A



Example: Markov ChainExample: Markov Chain

 Joint probability = Joint probability = P(A)P(B|A)P(C|B)P(D|C)P(A)P(B|A)P(C|B)P(D|C)

A B C D

P C =∑A∑B∑D
P A P B∣A P C∣B P D∣C 

P C =∑B∑A
P A P B∣A P C∣B∑D

P D∣C 

P C =∑B
k B P C∣B 

P C =k C 

P C =∑B
[∑A

P A P B∣A] P C∣B



Variable EliminationVariable Elimination

General idea:General idea:
 Write query in the formWrite query in the form

 IterativelyIteratively
– Move all irrelevant terms outside of innermost sumMove all irrelevant terms outside of innermost sum
– Perform innermost sum, getting a new termPerform innermost sum, getting a new term
– Insert the new term into the productInsert the new term into the product

∑ ∑∑∏=
kx x x i

iin paxPXP
3 2

)|(),( e



Example: AlarmExample: Alarm

Five state featuresFive state features
   A: Alarm A: Alarm 
   B: BurglaryB: Burglary
   E: EarthquakeE: Earthquake
   J: JohnCallsJ: JohnCalls
   M: MaryCallsM: MaryCalls



A Simple Bayes Net

Burglary Earthquake

Alarm

MaryCallsJohnCalls

causes

effects

Directed acyclic
graph (DAG)



Assigning Probabilities to Roots

Burglary Earthquake

Alarm

MaryCallsJohnCalls

0.001

P(B)

0.002

P(E)



Conditional Probability Tables

0.95
0.94
0.29
0.001

T
F
T
F

T
T
F
F

P(A|…)EB

Burglary Earthquake

Alarm

MaryCallsJohnCalls

0.001

P(B)

0.002

P(E)

Size of the CPT for a 
node with k parents: 2k+1



Conditional Probability Tables

0.95
0.94
0.29
0.001

T
F
T
F

T
T
F
F

P(A|…)EB

Burglary Earthquake

Alarm

MaryCallsJohnCalls

0.001

P(B)

0.002

P(E)

0.90
0.05

T
F

P(J|…)A

0.70
0.01

T
F

P(M|…)A



What the BN Means

0.95
0.94
0.29
0.001

T
F
T
F

T
T
F
F

P(A|…)EB

Burglary Earthquake

Alarm

MaryCallsJohnCalls

0.001

P(B)

0.002

P(E)

0.90
0.05

T
F

P(J|
…)

A

0.70
0.01

T
F

P(M|…)A

P(x1,x2,…,xn) = Πi=1,…,nP(xi|Parents(Xi))



Calculation of Joint Probability

0.95
0.94
0.29
0.001

T
F
T
F

T
T
F
F

P(A|…)EB

Burglary Earthquake

Alarm

MaryCallsJohnCalls

0.001

P(B)

0.002

P(E)

0.90
0.05

T
F

P(J|…)A

0.70
0.01

T
F

P(M|…)A

P(J∧ M∧ A∧ ∼ B∧ ∼ E)
= P(J|A)P(M|A)P(A|∼ B,∼ E)P(∼ B)P(∼ E)
= 0.9 x 0.7 x 0.001 x 0.999 x 0.998
= 0.00062



Background: IndependenceBackground: Independence
 Marginal independence:Marginal independence:

XX⊥Y⊥Y := P(X,Y) = P(X)P(Y) := P(X,Y) = P(X)P(Y)

in other words,in other words,
P(X|Y) = P(X)           P(Y|X) = P(Y)P(X|Y) = P(X)           P(Y|X) = P(Y)

 Conditional independenceConditional independence
X⊥Y X⊥Y | Z := P(X, Y | Z) = P(X| Z := P(X, Y | Z) = P(X  | Z)P(Y | Z)| Z)P(Y | Z)

    oror  := P(X | Y, Z) = P(X  := P(X | Y, Z) = P(X  | Z)| Z)

Recall that P(x|y) = P(x,y)/P(y)Recall that P(x|y) = P(x,y)/P(y)



What the BN Encodes

 Each of the beliefs Each of the beliefs 
JohnCalls and JohnCalls and 
MaryCalls is MaryCalls is 
independent of Burglary independent of Burglary 
and Earthquake given and Earthquake given 
Alarm or Alarm or ¬¬ AlarmAlarm

 The beliefs JohnCalls and The beliefs JohnCalls and 
MaryCalls are MaryCalls are 
independent given Alarm independent given Alarm 
or or ¬¬ AlarmAlarm

Burglary Earthquake

Alarm

MaryCallsJohnCalls

For example, John does
not observe any burglaries
directly



What the BN Encodes

 Each of the beliefs Each of the beliefs 
JohnCalls and JohnCalls and 
MaryCalls is MaryCalls is 
independent of Burglary independent of Burglary 
and Earthquake given and Earthquake given 
Alarm or Alarm or ¬¬ AlarmAlarm

 The beliefs JohnCalls and The beliefs JohnCalls and 
MaryCalls are MaryCalls are 
independent given Alarm independent given Alarm 
or or ¬¬ AlarmAlarm

Burglary Earthquake

Alarm

MaryCallsJohnCalls

For instance, the reasons why 
John and Mary may not call if 
there is an alarm are unrelated 



IndependenceIndependence

 Say we want to know the probability of Say we want to know the probability of 
some variable (e.g. JohnCalls) given some variable (e.g. JohnCalls) given 
evidence on another (e.g. Alarm).  What evidence on another (e.g. Alarm).  What 
variables are relevant to this calculation?variables are relevant to this calculation?

 I.e.: Given an arbitrary graph G = (V,E), is I.e.: Given an arbitrary graph G = (V,E), is 
XXAA⊥⊥XXBB|X|XCC  for some A,B, and C?for some A,B, and C?

 The answer can be read directly off the The answer can be read directly off the 
graph, using a notion called graph, using a notion called D-separationD-separation



IndependenceIndependence

 Three cases:Three cases:



IndependenceIndependence

 Three cases:Three cases:
(1) Markov Chain (linear)

A B C

A B C

~(XA⊥XC)

XA⊥Xc|XB



IndependenceIndependence

 Three cases:Three cases:
(2) Common Cause Model (diverging)

A B C

A B C

~(XA⊥XC)

XA⊥Xc|XB



IndependenceIndependence

 Three cases:Three cases:
(3) “Explaining away” (converging)

A B C

A B C

XA⊥XC

~(XA⊥Xc|XB)



Structure of BNStructure of BN

 The relation:The relation:

   P(x   P(x11,x,x22,…,x,…,xnn) = ) = ΠΠi=1,…,ni=1,…,nP(xP(xii|Parents(X|Parents(Xii))))

means that each belief is independent of its means that each belief is independent of its 
predecessors in the BN given its parentspredecessors in the BN given its parents

 Said otherwise, the parents of a belief XSaid otherwise, the parents of a belief Xii  are all are all 
the beliefs that the beliefs that “directly influence” “directly influence” XXii  

E.g., JohnCalls is influenced by Burglary, but not 
directly. JohnCalls is directly influenced by Alarm



Locally Structured DomainLocally Structured Domain

 Size of CPT: 2Size of CPT: 2k+1k+1, where k is the number , where k is the number 
of parentsof parents

 In a In a locally structured domain, each belief , each belief 
is directly influenced by relatively few is directly influenced by relatively few 
other beliefs and k is smallother beliefs and k is small

 BN are better suited for locally structured BN are better suited for locally structured 
domainsdomains



Inference PatternsInference Patterns

Burglary Earthquake

Alarm

MaryCallsJohnCalls

Diagnostic

Burglary Earthquake

Alarm

MaryCallsJohnCalls

Causal

Burglary Earthquake

Alarm

MaryCallsJohnCalls

Intercausal

Burglary Earthquake

Alarm

MaryCallsJohnCalls

Mixed

• Basic use of a BN: Given new
observations, compute the new
strengths of some (or all) beliefs

• Other use: Given the strength of
a belief, which observation should
we gather to make the greatest
change in this belief’s strength?



What can Bayes nets be used What can Bayes nets be used 
for?for?

Posterior probabilities
– Probability of any event given any evidence

Most likely explanation
– Scenario that explains evidence

Rational decision making
– Maximize expected utility
– Value of Information

Effect of intervention
– Causal analysis

Earthquake

Radio

Burglary

Alarm

Call

Radio

Call

Figure from N. Friedman

Explaining away effect



Inference Ex. 2Inference Ex. 2

RainSprinkler

Cloudy

WetGrass

∑=
c,s,r

)c(P)c|s(P)c|r(P)s,r|w(P)w(P

∑ ∑=
s,r c

)c(P)c|s(P)c|r(P)s,r|w(P

∑=
s,r

1 )s,r(f)s,r|w(P )s,r(f1

Algorithm is computing not individual
probabilities, but entire tables

•Two ideas crucial to avoiding exponential blowup:
• because of the structure of the BN, some
subexpression in the joint depends only on a small number
of variables
•By computing them once and caching the result, we
can avoid generating them exponentially many times



Hidden Markov ModelsHidden Markov Models

 Observe effects of hidden stateObserve effects of hidden state
 Hidden state changes over timeHidden state changes over time
 We have a model of how it changesWe have a model of how it changes
 E.g. speech recognitionE.g. speech recognition

A B C DA

a b c d



Types Of Nodes On A PathTypes Of Nodes On A Path

Radio

Battery

SparkPlugs

Starts

Gas

Moves

linear

converging

diverging



Independence Relations In BNIndependence Relations In BN

Radio

Battery

SparkPlugs

Starts

Gas

Moves

linear

converging

diverging

Given a set E of evidence nodes, two beliefs 
connected by an undirected path are 
independent if one of the following three 
conditions holds:
1. A node on the path is linear and in E
2. A node on the path is diverging and in E
3. A node on the path is converging and 
    neither this node, nor any descendant is in E 



Independence Relations In BNIndependence Relations In BN

Radio

Battery

SparkPlugs

Starts

Gas

Moves

linear

converging

diverging

Given a set E of evidence nodes, two beliefs 
connected by an undirected path are 
independent if one of the following three 
conditions holds:
1. A node on the path is linear and in E
2. A node on the path is diverging and in E
3. A node on the path is converging and 
    neither this node, nor any descendant is in E Gas and Radio are independent 

given evidence on SparkPlugs



Independence Relations In BNIndependence Relations In BN

Radio

Battery

SparkPlugs

Starts

Gas

Moves

linear

converging

diverging

Given a set E of evidence nodes, two beliefs 
connected by an undirected path are 
independent if one of the following three 
conditions holds:
1. A node on the path is linear and in E
2. A node on the path is diverging and in E
3. A node on the path is converging and 
    neither this node, nor any descendant is in E 

Gas and Radio are independent 
given evidence on Battery



Independence Relations In BNIndependence Relations In BN

Radio

Battery

SparkPlugs

Starts

Gas

Moves

linear

converging

diverging

Given a set E of evidence nodes, two beliefs 
connected by an undirected path are 
independent if one of the following three 
conditions holds:
1. A node on the path is linear and in E
2. A node on the path is diverging and in E
3. A node on the path is converging and 
    neither this node, nor any descendant is in E 

Gas and Radio are independent 
given no evidence, but they are
dependent given evidence on 

Starts or Moves


