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Bayes Nets

B Representation of probabilistic information
— reasoning with uncertainty

B Example tasks
— Diagnose a disease from symptoms

— Predict real-world information from noisy
sSensors

— Process speech
— Parse natural language



This lecture

B Basic probabillity
— distributions
— conditional distributions
— Bayes' rule
B Bayes nefts
— representation
— Independence
— algorithms

— specific types of nets
= Markov chains, HMMs



Probability

B Random Variables

— Boolean/Discrete
= True/false
= Cloudy/rainy/sunny
= e.g. die roll, coin flip

— Continuous
= [0,1] (i.e. 0.0 <= x <= 1.0)
= e.g. thrown dart position, amount of rainfall



® Probability Distribution

— In absence of any other info

Unconditional Probability

Sums to 1

for discrete variable, it's a table
E.g. P(Sunny) = .65 (thus, P(7Sunny) = .35)

for discrete variables, it's a table

Weather |[sunny|cloudy| rainy |snowy
P(Weather)| 0.65 | 0.19 | 0.14 | 0.02

Die 1 2 13 14156
P(Die) [1/6 | 1/6[1/6]1/6[1/6]1/6




Continuous Probability

B Probability Density Function

— Continuous variables
— E.g. Uniform, Gaussian, Poisson...

gaussian




Joint Probability

Probability of several variables being set at the same time
— e.g. P(Weather,Season)

Still sums to 1

2-D table

P(Weather, Season)

sunny|cloudy| rainy | snowy
summer | 0.45 | 0.04 | 0.01 0 05

winter 02 | 015 ] 013 | 0.02 | 5

0.65 0.19 0.14 0.02 1

Full Joint is a joint of all variables in model
Can get "marginal” of one variable
— sum over the ones we don't care about



Conditional Probability

B P(Y | X) is probability of Y given that all
we know Is the value of X

— E.g. P(cavity | toothache) = .8
= thus P(-cavity | toothache) = .2

® Product Rule
— P(X, Y) = P(Y | X) P(X)
— P(Y | X) =P(X,Y)/P(X) (normalizer toaddupto1)

00




Conditional Probability
Example

B P(disease=true) = 0.001 ; P(disease=false) = 0.999
B test 99% accurate:

P(test | disease)| true false
positive 0.99 0.01
negative 0.01 0.99

B Compute joint probabilities
— P(test=positive, disease=true) = 0.001 * 0.99 = 0.00099
— P(test=positive, disease=false) = 0.999 * 0.01 = 0.00999
— P(test=positive) = 0.00099 + 0.00999 = 0.01098



Bayes' Rule

B Result of product rule

—P(X, Y) = P(Y | X) P(X)
= P(X 1Y) P(Y)

BP(X|Y)=P(Y | X)P(X)/P(Y)

B P(disease | test) = P(test | disease) *
P(disease) / P(test)



Conditional Probability
Example (Revisited)

B P(disease=true) = 0.001 ; P(disease=false) = 0.999
B test 99% accurate:

P(test | disease)| true false
positive 0.99 0.01
negative 0.01 0.99

B P(disease=true | test=positive)
= P(disease=true, test=positive) / P(test=positive)

O = 0.00099 /0.01098 = 0.0901 = 9%



Important equations

= P(X,Y)=P(X|Y)P(Y)
= P(Y | X) P(X)

BP(Y | X)=P(X]|Y)P(Y)/P(X)

B Chain Rule of Probability
P(X,,X5,X3;-.-,X,) =

P(X1 )P(X2|X1 )P(X3|X1 ’X2)' " P(Xk|X1 ’XZ’ "o ’Xk-1)
P(X.,x,)

P(x_,X_,X.)

17772773



Bayes Nets

‘ Disease

| P(disease) |probability
TRUE 0.001
FALSE 0.999

\

‘ Test result

P(test | disease) | true false
positive 0.99 0.01
negative 0.01 0.99




Causal reasoning

‘ Disease

|

‘ Test result

+

‘ Disease

!

|

‘ Test result




Causal reasoning

‘ Disease

|

Y

‘ Test result

B not just probabilistic
reasoning

B causal reasoning

— arrow direction has
Important meaning

B manipulating
causes changes
outcomes

B manipulating
outcomes does not
change causes



Bayes Nets

B Shaded means

‘ . observed
Disease
— we know the value

|
of the variable

— then we calculate
P(net | observed)

Test result



Example: Markov Chain

B Joint probabillity = P(A,B,C,D)
= P(A)P(B|A)P(C|A,B)P(DI|A,B,C) (by C.R.)

® ® 6 6



Example: Markov Chain

B Joint probabillity = P(A,B,C,D)
= P(A)P(B|A)P(C|A,B)P(DI|A,B,C) (by C.R.)

® ® 6 6

P(DJA,B,C) = P(D|C)



Example: Markov Chain

B Joint probabillity = P(A,B,C,D)
= P(A)P(B|A)P(C|A,B)P(DI|A,B,C) (by C.R.)

® ® 6 6

P(A)P(BIA)P(CIB)P(DIC)



Example: Markov Chain

B Joint probabillity = P(A)P(B|A)P(C|B)P(D|C)

(& 0 0 0




Example: Markov Chain

B Joint probabillity = P(A)P(B|A)P(C|B)P(D|C)

® 6 6 6

BZDP< ) P(B|4)P(C|B)P(D|C)
P(B|4)P(C|B)), P(D|C)

A)P(B|A)] P(C|B)




Variable Elimination

General idea:
® \Write query in the form

P(X,e)=5 3 S [P | pa)

Xy

H [teratively
— Move all irrelevant terms outside of innermost sum
— Perform innermost sum, getting a new term
— Insert the new term into the product



Example: Alarm

Five state features
B A: Alarm

B B: Burglary

B E: Earthquake
® J: JohnCalls

® M: MaryCalls



A Simple Bayes Net

Burglary Earthquake

Directed acyclic
graph (DAG)

Causes

effects




Assigning Probabilities to Roots

Burglary Earthquake

(e

JohnCals WaryCals



Conditional Probability Tables

P(E)
Earthquake) [o.002

Size of the CPT for a

node with k parents: 25*



Conditional Probability Tables

P(E)
0.002

Earthquake




What the BN Means

P(B) P(E)
Burglary) [o.0o1 Earthquake) [o.002

B|E

T|[T]0.95

T|F|0.94
l . F|T]0.29

APy Al PM]...)
T| 0:90 T 0.70
0.05 F|0.01

-




Calculation of Joint Probability

Burglary

POMOAOCOBOCE)
= P(J|A)P(M|A)P(A|OB,OE)P(OB)P(OE)

P(B)

0.001

=0.9x0.7 x0.001 x 0.999 x 0.998

= 0.00062

Earthquake

P(E)

0.002

P(A]...)

MM |m

M—AT—-|m

0.95
0.94
0.29
0.001

P(JI...)

0.90
0.05

A PM...)

T(0.70
F10.01




Background: Independence

B Marginal independence.:
XLY := P(X,Y) = P(X)P(Y)
In other words,
P(X]Y) = P(X) P(Y]X) = P(Y)

B Conditional independence
X1Y|Z:=P(X,Y|Z2)=P(X]| 2P |2)
or =P(X|Y,Z) =PX|2)

Recall that P(x|y) = P(x,y)/P(y)



What the BN Encodes

For example, John does

not observe any burglaries

B Fach of the beliefs
JohnCalls and
MaryCalls is
independent of Burglary
and Earthquake given

Alarm or = Alarm

directly

B The beliefs JohnCalls and
MaryCalls are
iIndependent given Alarm

or = Alarm




What the BN Encodes

For instance, the reasons why

John and Mary may not call if
there is an alarm are unrelated

B Fach of the beliefs
JohnCalls and
MaryCalls is
independent of Burglary
and Earthquake given

Alarm or = Alarm

MaryCalis>

B The beliefs JohnCalls and

MaryCalls are
Independent given Alarm

or = Alarm



Independence

B Say we want to know the probability of
some variable (e.g. JohnCalls) given
evidence on another (e.g. Alarm). What
variables are relevant to this calculation?

m | e.. Given an arbitrary graph G = (V,E), Is
X, 1X;|X. for some A,B, and C?

B The answer can be read directly off the
graph, using a notion called D-separation



Independence

B [hree cases:



Independence

B Three cases:
(1) Markov Chain (linear)



Independence

B Three cases:
(2) Common Cause Model (diverging)



Independence

B [hree cases:

(3) “Explaining away” (converging)



Structure of BN

B [he relation:
P(X,X,....x,) = [1_,  P(x|Parents(X))

means that each belief is independent of its
predecessors in the BN given its parents

m Said otherwise, the parents of a belief X are all
the beliefs that “directly influence” X

E.g., JohnCalls is influenced by Burglary, but not

directly. JohnCalls is directly influenced by Alarm



Locally Structured Domain

B Sjze of CPT: 21 where k is the number
of parents

B |[n a locally structured domain, each belief
IS directly influenced by relatively few
other beliefs and k is small

B BN are better suited for locally structured
domains



Inference Patterns

(Earthauake)
 Basic use of a BN: Given new
observations, compute the new
strengths of some (or all) beliefs

Earthquake

Burglary » Other use: Given the strength of
a belief, which observation should

| we gather to make the greatest

change in this belief's strength?

aryCalizg




What can Bayes nets be usead

for?
® Posterior probabilities
— Probability of any event given any evidence

B Most likely explanation EXplalnlng away effect
— Scenario that explains evidence ﬁ ﬁ @

B Rational decision making K’

— Maximize expected utility
— Value of Information
Radla

B Effect of intervention
— Causal analysis

Figure from N. Friedman



Inference EXx. 2

Cloudy>

mé Rain

Algorithm is computing not individual

*Two ideas crucial to avoiding exponential blowup:
* because of the structure of the BN, some
subexpression in the joint depends only on a small number
of variables
By computing them once and caching the result, we
can avoid generating them exponentially many times

- Z P(W | I', S)fl (I‘, S)




Hidden Markov Models
* oo
®© ®©® ®© ©

B Observe effects of hidden state

B Hidden state changes over time

® \We have a model of how it changes
B F g. speech recognition



Types Of Nodes On A Path




Independence Relations In BN

-

“Gas

Radio

Given a set E of evidence nodes, two beliefs
connected by an undirected path are
independent if one of the following three
conditions holds:

1. A node on the path is linear and in E

2. A node on the path is diverging and in E
3. A node on the path is converging and

neither this node, nor any descendant is in E @




Independence Relations In BN

-

(Gas

Given a set E of evidence nodes, two beliefs
connected by an undirected path are

independent if one of the following three
conditions holds: @ ~~~~~~~~~~~~

1.

2.
Gas and Radio are independent @
given evidence on SparkPlugs




Independence Relations In BN

Given a set E of evidence nodes, two beliefs

el e — L L

icnc‘_‘“ Radio are independent
cC given evidence on Battery




Independence Relations In BN

M given no evidence, but they are
| dependent given evidence on

Starts or Moves




