# The Binding Problem

- Massively Parallel Brain
- Unitary Conscious Experience
- ☐ *Many Variations and Proposals*
- Our focus: The Variable Binding Problem



# **Problem**

- Binding problem
  - In vision
    - You do not exchange the colors of the shapes below





- In behavior
  - Grasp motion depends on object to grasp
- In inference
  - $Human(x) \rightarrow Mortal(x)$
  - Must bind a variable to x

# **Automatic Inference**

- Inference needed for many tasks
  - Reference resolution
  - General language understanding
  - Planning
- Humans do this quickly and without conscious thought
  - Automatically
  - No real intuition of how we do it

# Other Solutions in Inference

- Brute-force enumeration
  - Does not scale to depth of human knowledge
- Signature propagation (direct reference)
  - Difficult to pass enough information to directly reference each object
  - Unifying two bindings (e.g. reference resolution) is difficult
- Temporal synchrony example (SHRUTI)
  - Little biological evidence

# **SHRUTI**

• SHRUTI does inference by connections between simple computation nodes

Nodes are small groups of neurons

 Nodes firing in sync reference the same object



# shrutí

A Neurally Plausible model of Reasoning

Lokendra Shastri
International Computer Science Institute
Berkeley, CA 94704

©llokendha Shasinii ICSI, Berkele

## Five levels of Neural Theory of Language



abstraction

# "John fell in the hallway. Tom had cleaned it. He got hurt."

- $\Rightarrow$  Tom had cleaned the hallway.
- $\Rightarrow$  <u>The hallway floor was wet</u>.
- $\Rightarrow$  <u>John slipped and fell on the wet floor</u>.
- ⇒ John got hurt as a result of the fall.

such inferences establish referential and causal coherence.

# Reflexive Reasoning

- Ubiquitous
- ☐ Automatic, effortless
- ☐ Extremely fast --- almost a <u>reflex</u> response of our cognitive apparatus

# Reflexive Reasoning

## Not all reasoning is reflexive

Contrast with reflective reasoning

deliberate

involves explicit consideration of alternatives

require props (paper and pencil)

e.g., solving logic puzzles ... differential equations

## How fast is reflexive reasoning?

• We understand language at the rate of 150-400 words per minute

⇒ Reflexive inferences required for establishing inferential and causal coherence are drawn within a few hundred milliseconds

# How can a system of slow and simple neuron-like elements

- encode a large body of semantic and episodic knowledge and yet
- perform a wide range of inferences within a few hundred milliseconds?

## Characterization of reflexive reasoning?

• What can and cannot be inferred via reflexive processes?

## **Shruti**

#### http://www.icsi.berkeley.edu/~shastri/shruti

- Lokendra Shastri
- V. Ajjanagadde
- Carter Wendelken
- D. Mani
- D.J. Grannes
- Jerry Hobbs, USC/ISI
- Marvin Cohen, CTI
- Bryan Thompson, CTI

(Penn, ex-graduate student)

(UCB, ex-graduate student)

(Penn, ex-graduate student)

(UCB, ex-graduate student)

(abductive reasoning)

(metacognition; belief and utility)

(metacognition; belief and utility)

# Reflexive Reasoning representational and processing issues

• Activation-based (dynamic) representation of events and situations (relational instances)

## Dynamic representation of relational instances

"John gave Mary a book"

giver: John

recipient: Mary

given-object: a-book



## Reflexive Reasoning

## Requires compatible neural mechanisms for:

- Expressing dynamic bindings
- Systematically propagating dynamic bindings
- Computing coherent explanations and predictions
  - evidence combination
  - instantiation and unification of entities

All of the above must happen rapidly

## **Learning**

- <u>one-shot</u> learning of events and situations (episodic memory)
- gradual/incremental learning of concepts, relations, schemas, and causal structures

#### **Relation focal-cluster**



#### Entity, category and relation focal-clusters



#### Entity, category and relation focal-clusters



Functional nodes in a focal-cluster [collector (+/-), enabler (?), and role nodes] may be situated in different brain regions

### Focal-cluster of a relational schema



## Focal-clusters

Nodes in the fall focal-cluster become active when

- perceiving a fall event
- remembering a fall event
- understanding a sentence about a fall event
- experiencing a fall event

A focal-cluster is like a "supra-mirror" cluster

### Focal-cluster of an entity

focal-clusters of perceptual schemas and sensory representations associated with John

focal-clusters of other entities and categories semantically related to John



episodic memories where John is one of the role-fillers

focal-clusters of motor schemas associated with John

focal-clusters of lexical knowledge associated with John

# "John fell in the hallway"



# "John fell in the hallway"



## "John fell in the hallway"



### Encoding "slip => fall" in Shruti



### "John slipped in the hallway" -- "John fell in the hallway"



## A Metaphor for Reasoning

- An episode of reflexive reasoning is a transient propagation of rhythmic activity
- Each entity involved in this reasoning episode is a phase in this rhythmic activity
- Bindings are synchronous firings of cell clusters
- Rules are interconnections between cellclusters that support propagation of synchronous activity



#### Focal-clusters with intra-cluster links





Shruti always seeks explanations



## Encoding "slip => fall" in Shruti



#### Linking focal-clusters of types and entities





#### Focal-clusters and context-sensitive priors (T-facts)









#### Focal-clusters and episodic memories (E-facts)







#### Explaining away in Shruti



©Lokendra Shastri ICSI, Berkele

## Other features of Shruti

- Mutual inhibition between collectors of incompatible entities
- Merging of phases -- unification
- Instantiation of new entities
- Structured priming

#### Unification in Shruti: merging of phases

The activity in focal-clusters of two entity or relational instances will synchronize if there is evidence that the two instances are the same

R1: Is there an entity A of type T filling role r in situation P? (Did a man fall in the hallway?)

R2: Entity B of type T is filling role r in situation P. (John fell in the hallway.)

In such a situation, the firing of A and B will synchronize.

Consequently, A and B will unify, and so will the relational instances involving A and B.

©Lokendra Shastri ICSI, Berkele

#### Entity instantiation in Shruti

If Shruti encodes the rule-like knowledge:

 $x:Agent\ y:Location\ fall(x,y) => hurt(x)$ 

it automatically posits the existence of a location where John fell in response to the dynamic instantiation of hurt(x)

OLokendra Shastri ICSI, Berkele

#### Encoding "fall => hurt" in Shruti





#### The activation trace of +:slip and +:trip





#### A Metaphor for Reasoning

- An episode of reflexive reasoning is a transient propagation of rhythmic activity
- Each entity involved in this reasoning episode is a phase in this rhythmic activity
- Bindings are synchronous firings of cell clusters
- Rules are interconnections between cell-clusters that support context-sensitive propagation of activity
- Unification corresponds to merging of phases
- A stable inference (explanation/answer) corresponds to reverberatory activity around closed loops

#### Support for Shruti

- Neurophysiological evidence: transient synchronization of cell firing might encode dynamic bindings
- Makes plausible predictions about working memory limitations
- Speed of inference satisfies performance requirements of language understanding
- Representational assumptions are compatible with a biologically realistic model of episodic memory

#### Neurophysiological evidence for synchrony

- Synchronous activity found in anesthetized cat as well as in anesthetized and awake monkey.
- Spatially distributed cells exhibit synchronous activity if they represent information about the same object.
- Synchronous activity occurs in the gamma band (25--60Hz) (maximum period of about 40 msec.)
- frequency drifts by 5-10Hz, but synchronization stays stable for 100-300 msec
- In humans EEG and MEG signals exhibit power spectrum shifts consistent with synchronization of cell ensembles
  - orienting or investigatory behavior; delayed-match-to- sample task;
     visuo-spatial working memory task

OLokendra Shasiri

#### Predictions: constraints on reflexive inference

- gamma band activity (25-60Hz) underlies dynamic bindings (the maximum period ~40 msec.)
- allowable jitter in synchronous firing 3 msec. lead/lag.
  - ⇒ only a small number of distinct conceptual entities can participate in an episode of reasoning

7 +/- 2 (40 divided by 6)

as the number of entities increases beyond five, their activity starts overlapping, leading to cross-talk

Note: Not a limit on the number of co-active bindings!

©Lokendra Shastri ICSI, Berkele

#### Predictions: Constraints on reflexive reasoning

- A large number of relational instances (facts) can be co-active, and numerous rules can fire in parallel, but
- 2. only a small number of distinct entities can serve as role-fillers in this activity
- 3. only a small number of instances of the same predicate can be co-active at the same time
- 4. the depth of inference is bounded systematic reasoning via binding propagation degrades to a mere spreading of activation beyond a certain depth.

2 and 3 specify limits on Shruti's working memory

#### Massively Parallel Inference

- if gamma band activity underlies propagation of bindings
- each binding propagation step takes ca. 25 msec.
- inferring "John may be hurt" and "John may have slipped" from "John fell" would take only ca. 200 msec.
- time required to perform inference is independent of the size of the causal model

©Lokendra Shastri ICSI, Berkeli

#### Probabilistic interpretation of link weights



©Lokendra Shastri ICSI, Berkeley

#### **Evidence Combination**



©Lokendra Shastri ICSI, Berkeley

# Encoding X-schema



©Lokendra Shastri ICSI, Berkele



©Lokendra Shastri ICSI, Berkeley





## **Proposed Alternative Solution**

- Indirect references
  - Pass short signatures, "fluents"
    - Functionally similar to SHRUTI's time slices
  - Central "binder" maps fluents to objects
    - In SHRUTI, the objects fired in that time slice
  - Connections need to be more complicated than in SHRUTI
    - Fluents are passed through at least 3 bits
    - But temporal synchrony is not required

# Components of the System

- Object references
  - Fluents
  - Binder
- Short term storage
  - Predicate state
- Long term storage
  - Facts, mediators, what predicates exist
- Inference
  - Mediators
- Types
  - Ontology

## Fluents:

Roles are just patterns of activation 3-4 bits



## **Binder:**

- What does the pattern mean?
  - The binder gives fluent patterns meaning



### **Predicates:**

• Represent short term beliefs about the world



### Facts:

• Support or refute belief in a specific set of bindings of a given predicate



Fact: "John owns book117"

## **Inference:**

- Connections between predicates form evidential links
  - Big(x) & CanBite(x) =>  $\overline{Scary(x)}$
  - Poisonous(x) & CanBite(x)  $\Rightarrow$  Scary(x)
  - Strength of connections and shape of neuron response curve determines exactly what "evidence" means
- Direct connections won't work
  - Consider Big(f1) & Poisonous(f1)
  - We want to "Or" over a number of "And"s

## Solution: Mediators



- Multiple antecedents
- Role consistency

©Lokendra Shasiri ICSI, Berkelev

# Mediators (continued)



©Lokendra Shastri ICSI, Berkeley

## Fluents:

Roles are just patterns of activation 3-4 bits



## **Binder:**

- What does the pattern mean?
  - The binder gives fluent patterns meaning



## **Multiple Assertions**

- As described so far, the system cannot simultaneously represent Big(f1) and Big(f2)
- Solution
  - Multiple instances of predicates
  - Requires more complex connections
    - Signals must pass only between clusters with matching fluents
    - Questions must requisition an appropriate number of clusters

# Multiple Assertions (detail)

 Connections between Predicates and their evidence Mediators are easy 1-1



## Multiple Assertions (detail)

- Connections between Predicates and their evidence Mediators are easy 1-1
- Evidential connections of Mediators and their evidence Predicates are easy
  - Just connect + and nodes dependent on matching fluents
- Questions going between Mediators and evidence Predicates are hard
  - Add a selection network to deal with one question at a time

# Components of the System

- Object references
  - Fluents
  - Binder
- Short term storage
  - Predicate state
- Long term storage
  - Facts, mediators, what predicates exist
- Inference
  - Mediators
- Types
  - Ontology

## **Limitations**

- Size of network is linear with knowledge base
- Short-term knowledge limited by number of fluents
- Depth of inference limited in time
- Number of same assertions limited
- Inference only goes entirely correctly with ground instances (e.g. "Fido" and not "dog")

©Lokendra Shastri ICSI, Berkele

# Questions

©Lokendra Shastri ICSI, Berkele

#### Representing belief and utility in Shruti

- associate <u>utilities</u> with states of affairs (relational instances)
- encode <u>utility facts:</u>
  - context sensitive memories of utilities associated with certain events or event-types
- propagate utility along causal structures
- encode <u>actions</u> and their consequences

©Lokendra Shasiri ICSI, Berkelev

#### Encoding "Fall => Hurt"



©Lokendra Shastri ICSI, Berkele

#### Focal-clusters augmented to encode belief and utility



\*UF: utility fact; either a specific reward fact (R-fact) or a generic value fact (V-fact)

#### Behavior of augmented Shruti

#### Shruti reflexively

- Makes observations
- Seeks explanations
- Makes predictions
- Instantiates goals
- Seeks plans that enhance expected future utility
  - identify actions that are likely to lead to desirable situations and prevent undesirable ones

# Shruti suggests how different sorts of knowledge may be encoded within neurally plausible networks

- Entities, types and their relationships (John is a Man)
- Relational schemas/frames corresponding to action and event types (Falling, giving, ...)
- Causal relations between relational schemas (If you fall you can get hurt)
- Taxon/Semantic facts (Children often fall)
- Episodic facts (John fell in the hallway on Monday)
- Utility facts (It is bad to be hurt)

©llakendha Shastrii

## Current status of learning in Shruti

- ✓ Episodic facts: A biologically grounded model of "one-shot" episodic memory formation
  - Shastri, 1997; Proceedings of CogSci 1997
  - \_2001; Neurocomputing
  - \_2002; Trends in Cognitive Science
  - \_In Revision; Behavioral and Brain Science

(available as a Technical Report)

©llolkendharShastrii

### ...current status of learning in Shruti

#### Work in Progress

- Causal rules
- Categories
- Relational schemas

Shastri and Wendelken 2003; Neurocomputing

©llotkendha Shasinii



©Lokendra Shastri ICSI, Berkeley

# Questions

©Lokendra Shastri ICSI, Berkele