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Abstract

We describe a computational model of the acquisition
of early grammatical constructions that exploits two es-
sential features of the human language learner: signif-
icant prior knowledge of concepts and individual lexi-
cal items, and sensitivity to the statistical properties of
the input data. Such principles, previously applied to
lexical acquisition, are shown to be useful and neces-
sary for learning the structured mappings between form
and meaning needed to represent phrasal and clausal con-
structions. We describe an algorithm based on Bayesian
model merging that can induce a set of grammatical con-
structions based on simpler previously learned construc-
tions in combination with new utterance-situation pairs.
The resulting model shows how cognitive and compu-
tational constraints can intersect to produce a course of
learning consistent with data from studies of child lan-
guage acquisition.

Introduction
We describe a computational model of the acquisition of
early grammatical constructions that exploits two essen-
tial features of the human language learner: significant
prior knowledge of both concepts and individual lexi-
cal items, and sensitivity to the statistical properties of
the input data. Precocity on both fronts is usually as-
sumed to be crucial for lexical acquisition, as exemplified
by some proposed models for learning spatial relations
terms (Regier, 1996), object labels (Roy and Pentland,
1998) and action labels (Bailey, 1997; Siskind, 1997).
We focus here on larger phrasal and clausal constructions
and investigate the extent to which they can be learned
using the same principles employed in word learning.

We take as both inspiration and constraint the course
of development observed in crosslinguistic studies of
child language acquisition. In particular, our present do-
main of inquiry is restricted to the shift from single words
to word combinations, and our model makes strong as-
sumptions about prior knowledge – both ontological and
linguistic – on the part of the learner.

After describing these assumptions, we address the
representational complexities associated with larger
grammatical constructions. In the framework of Con-
struction Grammar (Goldberg, 1995), these construc-
tions can, like single-word constructions, be viewed as
mappings between the two domains of form and mean-
ing, where form typically refers to the speech or text

stream and meaning refers to a rich conceptual ontology.
They may also, however, involve relations among mul-
tiple entities in both form (e.g., multiple words and/or
phonological units) and meaning (multiple participants
in a scene). We introduce a simple formalism capable of
representing such relational constraints.

The remainder of the paper casts the learning prob-
lem in terms of two interacting processes, construction
hypothesis and construction reorganization, and presents
an algorithm based on Bayesian model merging for in-
ducing the best set of constructions to fit previously seen
data and generalize to new data. We conclude by dis-
cussing some of the broader implications of the model
for language learning and use.

Prerequisites
Our model of grammar learning makes several crucial as-
sumptions that acknowledge the significant prior knowl-
edge the language learner brings to the task. These fall
into two broad categories: representational requirements
for ontological knowledge; and the ability to acquire lex-
ical mappings.

Conceptual Representations
Infants inhabit a dynamic world of continuous percepts,
and how they process and represent these fluid sensa-
tions remains poorly understood. Well before the first
recognizable words are produced, however, a substantial
repertoire of concepts corresponding to people, objects,
settings and actions will have emerged from the chaos as
the beginnings of a stable ontology.

The acquisition of these concepts from naturalistic in-
put has been addressed by models in probabilistic, con-
nectionist, clustering and logical frameworks.1 For our
current spotlight on the acquisition of grammatical struc-
tures, we require only that conceptual representations ex-
hibit the kinds of category and similarity effects known
to be pervasive in human cognition (Lakoff, 1987). That
is, concepts should cluster into categories with prototype
structure and graded category membership. Represen-
tations should also facilitate the identification of similar

1Typically, input data corresponding to sensorimotor input
is described using a set of continuous and/or discrete features,
and standard machine learning techniques are used to acquire
categories based on supervised or unsupervised training.



concepts and provide some basis for generalization. The
current model uses an inheritance hierarchy with con-
cepts represented as feature structures.

An important additional requirement comes from the
assumption that many early concepts involve multiple
entities interacting within the context of some unified
event (Tomasello, 1992) or frame. Prelinguistic children
are competent event participants who have accumulated
structured knowledge about the roles involved in differ-
ent events and the kinds of entities likely to fill them.
Frame-based representations can capture the crucial re-
lational structure of many concepts, including not only
early sensorimotor knowledge but also aspects of the sur-
rounding social and cultural context.

It will be convenient to represent frames in terms
of individual role bindings: Throw.thrower:Human and
Throw.throwee:Object together bind a Throw frame with a
Human thrower acting on an Object throwee. Note that al-
though this representation highlights relational structure
and obscures lower-level features of the underlying con-
cepts, both aspects of conceptual knowledge will be cru-
cial to our approach to language learning.

Lexical Mappings
Lexical mappings associate an acoustic signal with an ar-
bitrary concept, ranging from familiar people and objects
to much more complex actions and interactions whose
physical referents may be more transient and difficult
to identify. Lexical items are initially tightly coupled
with the specific events, contexts and even purposes with
which they have co-occurred. Words are also subject to
polysemy effects, since the same form may be encoun-
tered in multiple distinct (though possibly related) con-
texts, which may be diverse enough to resist a single gen-
eralization. The word up, for example, may initially have
several distinct uses: as a request to be picked up; as
a comment on an upward movement; and as a remark
about a highly placed item.

It is important to note that word learning involves
much more than simply associating sound and mean-
ing. As described in detail by Bloom (2000), sophis-
ticated means of determining referential intent must be
employed to form the appropriate lexical mappings, and
general pragmatic skills must play a dominant role in
helping the child make sense of her environment, espe-
cially before she has amassed a collection of stable form-
meaning pairs. We do not attempt to model these com-
plex reasoning skills, which are necessary for successful
behavior in general and are not specific to the learning
task at hand.

But regardless of the complexity of either the referent
or the process by which it is inferred, the resulting map is
relatively simple: a given form can be mapped to a single
concept, or to several (possibly differentially weighted)
concepts. Our initial set of constructions contains a num-
ber of such lexical form-meaning maps, where for sim-
plicity we further constrain these to be mappings from
orthographic forms to feature-structure meanings, as in
Bailey (1997).

We now turn to the representationally more complex
case of grammatical constructions, before addressing
how such constructions are learned.

Grammatical Constructions
We base our representations of grammatical knowledge
on ideas from Construction Grammar (Goldberg, 1995)
and Cognitive Grammar (Langacker, 1991). In these ap-
proaches, larger phrasal and clausal units are, like lexical
constructions, pairings of form and meaning. A key ob-
servation in the Construction Grammar tradition is that
the meaning of a sentence may not be strictly predictable
from the meaning of its parts; the syntactic pattern it-
self may also contribute a particular conceptual fram-
ing. For example, the

���������
	���
����������
construction

underlying Pat sneezed the napkin off the table imposes
a causative reading on the typically non-causative verb
sneeze, and the need for an agentive recipient in the � ���
�������������������

construction renders Harry kicked the door
the ball somewhat anomalous.

On this account, syntactic patterns are inextricably
linked with meaning, and grammaticality judgments are
rightly influenced by semantic and pragmatic factors.
The interpretation and acceptability of an utterance thus
depends not only on well-formedness conditions but also
on the structure of the language user’s conceptual ontol-
ogy and on the situational and discourse context.

The main representational complexity introduced with
these multiword constructions is the possibility of struc-
ture in the form pole. As mentioned, although individ-
ual lexical items can evoke complex frames with multi-
ple participant roles (e.g., bye-bye, baseball), the actual
mapping between the form and meaning pole is necessar-
ily straightforward. With multiple form units available,
however, additional structures arise, both within the form
pole itself and, more significantly, in the relational cor-
relations between the form and meaning poles.2 That is,
a multiword construction may involve a more complex,
structured map between its form and meaning poles, with
maps between form and meaning relations whose argu-
ments are also mapped.

In addition to the sound patterns of individual words,
the form pole includes intonational contours, morpholog-
ical inflections and word order. As with single words, the
meaning pole encompasses the much larger set of frame-
based conceptual knowledge. The constructional map-
ping between the two domains typically consists of a set
of form relations (such as word order) corresponding to
a set of meaning relations (such as a role-filler binding).
As an example, Figure 1 gives an iconic representation of
some of the possible constructions involved in an analy-
sis of I throw the ball. The lexical constructions for � ,���������

and
����� �"!���#$# 3 all have simple poles of both

form and meaning. But besides the individual words and

2See Gasser and Colunga (2000) for arguments that the abil-
ity to represent relational correlations underlies infants’ reputed
aptitude for statistically driven learning of concrete and abstract
patterns.

3The definite determiner the explicitly depends on a repre-
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Figure 1: A constructional analysis of the sentence, I
throw the ball, with form elements at left, meaning ele-
ments at right and some constituent constructions linking
the two domains in the center.

concepts involved in the utterance, we have several word
order relationships (not explicitly represented in the dia-
gram) that can be detected in the form domain, and bind-
ings between the roles associated with Throw and other
semantic entities (as denoted by the double-headed ar-
rows within the meaning domain). Finally, the larger
clausal construction (in this case, a verb-specific one)
has constituent constructions, each of which is filled by
a different lexical construction.4 Crucially, the clausal
construction serves to associate the specified form rela-
tions with the specified meaning relations, where the ar-
guments of these relations are already linked by existing
(lexical) maps.

A more formal representation of the
� ������� �

� �����������������
construction is given in Figure 2. For cur-

rent purposes, it is sufficient to note that this represen-
tation captures the constituent constructions, as well as
constraints on its formal, semantic and constructional el-
ements. Each constituent has an alias used locally to re-
fer to it, and subscripts f and m are used to denote the
constituent’s form and meaning poles, respectively. A
designation constraint specifies a meaning type for the
overall construction.

Although this brief discussion necessarily fails to do
justice to Construction Grammar and related work, we
hope that it nevertheless conveys the essential represen-
tational demands on the structures to be learned.

Learning Constructions
We can now specify our construction learning task:
Given an initial set of constructions C and a sequence
of new training examples, find the best set of construc-
tions C � to fit the seen data and generalize to new data. In
accord with our discussion of conceptual prerequisites, a
training example is taken to consist of an utterance paired
with a representation of a situation, where the former is
a sequence of familiar and novel forms, and the latter a

sentation of the situational and discourse context that supports
reference resolution. For simplicity, we will ignore the internal
structure of “the ball” and treat it as an unstructured unit.

4This example, like the rest of those in the paper, is based
on utterances from the CHILDES corpus (MacWhinney, 1991)
of child-language interaction.

construction �������
	��
�������������������
constituents:

construct t1 of meaning type Human
construct t2 of type �����
�
	
construct t3 of meaning type Object

formal constraints:
t1 f before t2 f
t2 f before t3 f

semantic constraints:
t2m.thrower ��� t1m
t2m.throwee ��� t3m

designates t2m

Figure 2: Formal representation of the
� ������� �

� �����������������
construction, with separate blocks listing

constituent constructions, formal constraints (e.g., word
order) and semantic constraints (role bindings).

set of frame-based conceptual entities and role bindings
representing the corresponding scene.

Previous work on Bayesian model merging (Stolcke,
1994; Bailey, 1997) provides a suitable starting point. In
that framework, training data is first incorporated, with
each example stored as an independent model. Then
similar models are merged (and generalized); the result-
ing drop in likelihood is balanced against an increase in
the prior, which is based on minimum description length.
Merging continues until the posterior probability of the
model decreases.

A similar strategy can be applied to our current task,
which can be cast as a search through the space of pos-
sible grammars (or sets of constructions), where these
grammars can be evaluated using Bayesian criteria. The
operations on the set of constructions (merging and com-
position, described below as reorganization processes)
are straightforward extensions of operations used in pre-
vious work, though they must be modified to handle
relational structures. Similarly, the evaluation criteria
need not change significantly for the construction learn-
ing case. Specifically, a prior based on minimum descrip-
tion length favors grammars with fewer, more general
constructions that compactly encodes previously seen
data; this measure combats the inevitable correspond-
ing drop in likelihood. As usual, the learning algorithm
chooses the set of constructions that maximizes the pos-
terior probability of the set of constructions given the
data.

The main complication requiring a departure from pre-
vious work is the need to hypothesize structured maps
between form and meaning like those described in the
previous section. Essentially, incorporating new data in-
volves both the analysis of an utterance according to
known constructions and the hypothesis of a new con-
struction to account for any new mappings present in
the data. These processes, described below, are based
on the assumption that the learner expects correlations
between what is heard (the utterance) and what is per-
ceived (the situation).5 Some of these correlations have

5The task as defined here casts the learner as primarily com-
prehending (and not producing) grammatical utterances. Note,



already been encoded and thus accounted for by previ-
ously learned constructions; the tendency to try to ac-
count for the remaining ones leads to the formation of
new constructions. In other words, what is learned de-
pends directly on what remains to be explained. The
identification of the mappings between an utterance and
a situation that are predicted by known constructions can
be seen as a precursor to language comprehension, in
which the same mappings actively evoke meanings not
present in the situation. Both require the learner to have
an analysis procedure that determines which construc-
tions are potentially relevant, given the utterance, and,
by checking their constraints in context, finds the best-
fitting subset of those.

Once the predictable mappings have been explained
away, the learner must have a procedure for determin-
ing which new mappings may best account for new data.
The mappings we target here are, as described in the pre-
vious section, relational. It is crucial to note that a re-
lational mapping must hold across arguments that are
themselves constructionally correlated. That is, map-
pings between arguments must be in place before higher-
order mappings can be acquired. Thus the primary can-
didates for relational mappings will be relations over el-
ements whose form-meaning mapping has already been
established. This requirement may also be viewed as
narrowing the search space to those relations that are
deemed relevant to the current situation, as indicated by
their connection to already recognized forms and their
mapped meanings.

Details of these procedures are best illustrated by ex-
ample. Consider the utterance U1 = “you throw a ball”
spoken to a child throwing a ball. The situation S con-
sists of entities Se and relations Sr; the latter includes role
bindings between pairs of entities, as well as attributes
of individual entities. In this case, Se includes the child,
the thrown ball and the throwing action, as well as po-
tentially many other entities, such as other objects in the
immediate context or the parent making the statement:
Se =

�
Self,Ball,Block,Throw,Mother,. . . � . Relational bind-

ings include those encoded by the Throw frame, as well
as other properties and relations: Sr =

�
Throw.thrower:Self,

Throw.throwee:Ball, Ball.Color:Yellow, . . . � .
In the following sections we describe what the learner

might do upon encountering this example, given an
existing set of constructions C that has lexical en-
tries for

!���# #�� ����������� ! # �������
	 ������� ���
, etc., as well

as a two-word
��������� �"!���# #

construction associating
the before(throw,ball) word-order constraint with the
binding of Ball to the throwee role of the Throw frame.

Construction analysis and hypothesis
Given this information, the analysis algorithm in Fig-
ure 3 first extracts the set Fknown =

�
you,throw,ball � ,

however, that the learning algorithm is broadly compatible with
allowing production-based means of hypothesizing new map-
pings, which would be included in a more complete model.

which serves to cue constructions that have any of
these units in the form pole. In this case, Ccued =� 	 ����� ����������� ! ��#$#
� ��������� �"!���#$# � . Next, the con-
straints specified by these constructions must be matched
against the input utterance and situation. The form con-
straints for all the lexical constructions are trivially sat-
isfied, and in this case each also happens to map to a
meaning element present in S.6 Checking the form and
meaning constraints of the

��������� �"! ��#$#
construction is

also trivial: all relations of interest are directly available
in the input utterance and situation.7

Analyze utterance. Given utterance U in situation S and
current constructions C , produce best-fitting analysis A:

1. Extract the set Fknown of familiar form units from U , and
use them to cue the set Ccued of constructions.

2. Find the best-fit analysis A = � CA � FA � MA � , where
CA is the best-fitting subset of Ccued for utterance U in
situation S, FA is the set of form units and relations in U
used in CA, and MA is the set of meaning elements and
bindings in S accounted for by CA.

A has associated cost CostA providing a quantitative
measure of how well A accounts for U in S.

3. Reward constructions in CA; penalize cued but unused
constructions, i.e., those in Ccued � CA.

Figure 3: Construction analysis.

In the eventual best-fitting analysis A, the con-
structions used are CA =

� 	 ����� ����������� !���#$#
� ��������� �
!���#$# � , which cover the forms and form relations
in FA =

�
you,throw,ball,before(throw,ball) � and

map the meanings and meaning relations in MA =�
Self,Throw,Ball,Throw.throwee:Ball � . (Remaining unused

in this analysis is the form a.)
We proceed with our example by applying the proce-

dure shown in Figure 4 to hypothesize a new construc-
tion. All form relations and meaning bindings, respec-
tively, that are relevant to the form and meaning entities
involved in the analysis are extracted as, respectively,
Frel =

�
before(you,throw), before(throw,ball),

before(you,ball) � and Mrel =
�

Throw.thrower:Self,

Throw.throwee:Ball � ; the remainder of these not used
in the analysis are Frem =

�
before(you,throw),

before(you,ball) � and Mrem =
�

Throw.thrower:Self � .
The potential construction Cpot derived by replacing
terms with constructional references is made up of form
pole

�
before(

	 ���
f ,
���������

f ),before(
	 ���

f ,
!���# #

f ) �
6We assume the ����� construction is a context-dependent

construction that in this situation maps to the child (Self).
7Many complications arise in adult language – category

constraints on roles may apply only weakly, or may be over-
ridden by the use of metaphor or context. At the stage of in-
terest here, however, we assume that all constraints are simple
and few enough that exhaustive search should suffice, so we
omit the details about how cueing constructions, checking con-
straints and finding the best-fitting analysis proceed.



and meaning pole
� � �������

m.thrower:
	 ���

m � . The final
construction CU1 is obtained by retaining only those
relations in Cpot that hold over correlated arguments:

(
�
before(

	 ���
f ,
���������

f ) � , � ��������� m.thrower:
	 ���

m � )
Hypothesize construction. Given analysis A of utterance
U in situation S, hypothesize new construction CU linking
correlated but unused form and meaning relations:

1. Find the set Frel of form relations in U that hold between
the familiar forms Fknown, and the set Mrel of meaning
relations in S that hold between the mapped meaning
elements in MA.

2. Find the set Frem
� Frel � FA of relevant form relations

that remain unused in A, and the set Mrem
� Mrel � MA

of relevant meaning relations that remain unmapped in
A. Create a potential construction Cpot = (Frem,Mrem),
replacing terms with references to constructions in CA
where possible.

3. Create a new construction CU consisting of pairs of
form-meaning relations from Cpot whose arguments are
constructionally related.

4. Reanalyze utterance using C ���
CU � , producing a new

analysis A � with cost CostA � . Incorporate CU into C if
CostA � CostA �	� MinImprovement; else put CU in pool
of potential constructions.

5. If U contains any unknown form units, add the
utterance-situation pair 
 U � S � to the pool of unexplained
data.

Figure 4: Construction hypothesis.

At this point, the utility of CU1 can be evaluated by
reanalyzing the utterance to ensure a minimum reduc-
tion of the cost of the analysis. As noted in Step 4 of
Figure 4, a construction not meeting this criterion is held
back from immediate incorporation into C . It is possible,
however, that further examples will render it useful, so it
is maintained as a candidate construction. Similarly, Step
5 is concerned with maintaining a pool of examples that
involve unexplained units of form, such as the unfamil-
iar article a in this example. Further examples involving
similar units may together lead to the correct generaliza-
tion, through the reorganization process to which we now
turn.

Reorganizing constructions
The analysis-hypothesis process just described provides
the basis for incorporating new examples into the set of
constructions. A separate process that takes place in par-
allel is the data-driven, bottom-up reorganization of the
set of constructions on the basis of similarities among
and co-occurrences of multiple constructions. Figure 5
gives a high-level description of this process; we refrain
from delving into too much detail here, since these pro-
cesses are closely related to those described for other
generalization problems (Stolcke, 1994; Bailey, 1997).

Continuing our example, let us assume that the utter-
ance U2 = “she’s throwing a frisbee” is later encountered

Reorganize constructions. Incorporate new construction
Cn into an existing set of constructions C , reorganizing C
to consolidate similar and co-occurring constructions:

1. Find potential construction pairs to consolidate.
� Merge constructions involving correlated relational

mappings over one or more pairs of similar con-
stituents, basing similarity judgments and type gen-
eralizations on the conceptual ontology.� Compose frequently co-occurring constructions with
compatible constraints.

2. Evaluate constructions; choose the subset maximizing
the posterior probability of C on seen data.

Figure 5: Construction reorganization.

in conjunction with an appropriate scene, with similar re-
sults: in this case, both the unfamiliar inflections and the
article are ignored; the meanings are mapped; and con-
straints with appropriate correlations are found, resulting
in the hypothesis of the construction CU2 :

(
�
before(

� ���
f ,
���������

f ) � , � ��������� m.thrower:
�����

m � )
CU1 and CU2 bear some obvious similarities: both con-
structions involve the same form relations and meaning
bindings, which hold of the same constituent construc-
tion

���������
. Moreover, the other constituent is filled in

the two cases by
�����

and
	 ���

. As emphasized in our
discussion of conceptual representations, a key require-
ment is that the meaning poles of these two constructions
reflect their high degree of similarity.8 The overall simi-
larity between the two constructions can lead to a merge
of the constructional constituents, resulting in the merged
construction:

(
�
before( 
 f ,

���������
f ) � , � ��������� m.thrower: 
 m � )

where 
 is a variable over a construction constrained to
have a Human meaning pole (where Human is a gener-
alization over the two merged constituents). A similar
process, given appropriate data, could produce the gen-
eralized mapping:

(
�
before(

���������
f , � f ) � , � ��������� m.throwee: � m � )

where � is constrained to have an Object meaning pole.9

Besides merging based on similarity, constructions
may also be composed based on co-occurrence. For ex-
ample, the generalized ��������� �"��������� and

��������� �
������� �"!

constructions just described are likely to occur
in many analyses in which they share the

���������
con-

stituent. Since they have compatible constraints in both
form and meaning (in the latter case even based on the

8The precise manner by which this is indicated is not at is-
sue. For instance, a type hierarchy could measure the distance
between the two concepts, while a feature-based representation
might look for common featural descriptions.

9Although not further discussed here, examples with unex-
plained forms (such as the a in U1 and U2) may also undergo
merging, leading to the emergence of common meanings.



same conceptual Throw frame), repeated co-occurrence
eventually leads to the formation of a larger construction
that includes all three constituents:

(
�
before( 
 f ,

���������
f ),before(

���������
f , � f ) � ,� ���������

m.thrower: 
 m,
���������

m.throwee: � m � )
Note that both generalization operations we describe are,
like the hypothesis procedure, merely means of finding
potential constructions, and are subject to the evaluation
criteria mentioned earlier.

Discussion
The model we have proposed for the acquisition of gram-
matical constructions makes some claims about the rela-
tionship between comprehension and learning. We take
these processes to be tightly linked: new constructions
are hypothesized specifically to make up for correla-
tions not covered by currently known constructions. As
noted, a more complete model would include more active
production-based means of hypothesizing constructions
as well.

The model is compatible to the extent possible with
evidence from child language acquisition. The princi-
ples guiding construction hypothesis, in particular those
for mapping relevant form and meaning relations, have
counterparts in some of Slobin’s (1985) Operating Prin-
ciples for mapping. Construction reorganization allows
more general constructions to result from the merging
of lexically specfic constructions like those described by
(Tomasello, 1992).

More broadly, since the algorithm produces construc-
tions based on any utterance-situation pair and existing
set of constructions represented as described above, it
can apply equally well for more advanced stages of lan-
guage development, when the learner has more sophis-
ticated meaning representations and more complex con-
structions. The potential continuity between early lan-
guage acquisition and lifelong constructional reorgani-
zation offers hope for the modeling of adaptive language
understanding systems, human and otherwise.
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