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Theories of language production have long been expressed as connectionist
models. We outline the issues and challenges that must be addressed by
connectionist models of lexical access and grammatical encoding, and
review three recent models. The models illustrate the value of an interactive
activation approach to lexical access in production, the need for sequential
output in both phonological and grammatical encoding, and the potential for
accounting for structural effects on errors and structural priming from learn-
ing.

I. INTRODUCTION

Psycholinguistic research into language production—the process of translating thoughts
into speech—has long been associated with connectionist models. Spreading activation
models of lexical access in production represent some of the earliest applications of
connectionist ideas to psycholinguistic data (e.g., Dell & Reich, 1977; Harley, 1984;
MacKay, 1982; Stemberger, 1985). These models combined representations from linguis-
tics with interactive activation principles and sought to explain speech errors, particularly
errors resulting from multiple causes or processing levels. For example, “Lizst’s second
Hungarianrestaurant” instead of “rhapsody” involves mistakenly using a word that is
associatively, syntactically, and phonologically related to the intended word. Activation
that spreads interactively among processing levels seems to be a natural way to account
for these kinds of slips.
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Since the early speech-error models of lexical access, connectionist models of produc-
tion have progressed on three fronts. First, the empirical basis of the models has been
extended. They have now been applied to error data from aphasic patients, children, and
older adults (e.g., Berg & Schade, 1992; Burke, MacKay, Worthley, & Wade, 1991; Dell,
Schwartz, Martin, Saffran, & Gagnon, 1997; Stemberger, 1989) and to response time data
from experimental paradigms (e.g., Cutting & Ferreira, 1999; Griffin & Bock, 1998;
Roelofs, 1992, 1997; Schriefers, Meyer, & Levelt, 1990). Second, models have begun to
address grammatical encoding, the selection and ordering of words in sentences. The third
area of progress has concerned connectionist architectures. Whereas all of the early
models were hand-wired networks with local representations, some recent production
models make use of distributed representations acquired from learning algorithms. In
addition, recent architectures allow for the production of true sequences (Eikmeyer &
Schade, 1991; Jordan, 1986; Gupta, 1996; Hartley & Houghton, 1996; Houghton, 1990;
MacKay, 1987).

In this article, we examine some connectionist models of production. Our aim is not to
review the field, but rather to concentrate on our own recent efforts in two areas, lexical
access and grammatical encoding. Lexical access and grammatical encoding are aspects
of production that can be located in what has been called the formulation component
(Levelt, 1989). This component takes amessage, a nonverbal representation of the
utterance, and turns it into linguistic form. Words are accessed and ordered (grammatical
encoding) and their sounds are retrieved and organized for articulation (phonological
encoding). Thus the formulation component is distinguished from a prior component
responsible for message formation and a subsequent one that executes articulatory
movements. Specifically, we will present three models. The first model deals with the
access of single words and concentrates on explaining the errors of aphasic patients. The
second focuses on the phonological encoding and links error phenomena to the charac-
teristics of the vocabulary and the sequential nature of words. The third model addresses
structural priming effects in grammatical encoding (e.g., Bock, 1986a).

In our discussion of language production, two issues will be in focus: serial order and
linguistic structure. First, consider serial order. The creation of a temporal sequence is the
essence of production. Yet, the canonical connectionist architectures, such as feedforward
multi-layered networks, cannot create true temporal sequences. Rather these architectures
generate a single output activation pattern for a particular input in parallel. Of course, one
can finesse this problem by organizing output units into separate banks for each position
in the sequence. But that is not how production proceeds. Sentences are, for the most part,
constructed piecemeal from beginning to end. The words that are initially retrieved tend
to be placed early in the sentence and these initial placements constrain subsequent lexical
and structural decisions (Bock, 1982, 1986b, 1987a; Ferreira, 1996, 1997; Kempen &
Hoenkamp, 1987; Levelt, 1989). This property of production,incrementality, demands a
model with sequential output and where previous output interacts with the message to
guide subsequent output. Even within a word, temporal sequence is important. Not only
are the sounds of words articulated in sequence, but they also seem to be retrieved that
way from the lexicon (Meyer, 1991; Wheeldon & Levelt, 1995). The sequential retrieval
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of sounds is likely responsible for several phenomena such as the vulnerability of
word-initial sounds to speech errors (Gupta & Dell, 1999) and consequently any model
dealing with such phenomena must be sequential.

Furthermore, any production model must get the details of linguistic structure right.
Especially here, there is reason to expect production to differ from comprehension. In
comprehension, structural features, such as grammatical affixes or function words, are
simply cues that are often indirectly related to meaning. In fact, as the comprehensibility
of telegraphic speech shows, some structural cues are largely unnecessary for understand-
ing. Consequently, relatively less emphasis on structural cues is required in the process of
mapping from spoken or written language to meaning. Production models, in contrast,
must make linguistic structure a priority. As pointed out by Garrett (1975) and Bock
(1990), structural details such as subject-verb agreement affixes must be produced
regardless of whether they code for key aspects of the message. Structural features are
even preserved when speakers err. For example, one might say “I appled a pack” instead
of “I packed an apple.” Notice that the error preserves the phrase structure of the sentence,
keeping the function morphemes in place. Moreover, at the phonological level, the
intended word “an” changes to “a” in agreement with the initial consonant in “pack” and
the pronunciation of -ed changes from /t/ in “packed” to /d/ in “appled” (Fromkin, 1971).
How to handle this sensitivity to structure is a major challenge for connectionist models,
particularly for models that learn structure indirectly from the statistics of linguistic
sequences.

We now turn to the models, starting with models of lexical access.

II. LEXICAL ACCESS

Lexical access is, relatively speaking, the easy part of production to model. It is simple
pattern association: A pattern of activation corresponding to the meaning of a word needs
to be mapped onto a pattern corresponding to the word’s sounds. Moreover, lexical access
is not a generative process. Aside from the productive use of morphology, the words that
one seeks are stored in the lexicon.

Despite this seeming simplicity, lexical access poses a number of challenges. First,
word choice must be made in the context of other retrieved words and the speaker’s
communicative goals. For example, one can refer to someone as a person, a woman, a
mother, a female parent, “Sheila” or even “she.” As Roelofs (1996) and Levelt (1989)
point out, characterizing lexical access as just a mapping from the semantic features of a
concept to a lexical item ignores the fact that such features do not uniquely identify a
word. Second, words that have similar meanings do not necessarily have similar sounds,
for example, the words, “mother,” “father,” “man,” and “woman.” A semantic coding of
these words in terms of FEMALE (1 or 0) and PARENT (1 or 0) and a phonological
encoding of whether their initial sound is ‘m’ or not creates a mapping that is formally
equivalent to exclusive-OR (see Dell et al., 1997). As a result, the mapping between
meaning and sound is not linearly separable, and any network achieving this mapping
would require a layer of nonlinear hidden units between semantics and sound. Third, as
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we have already mentioned, the output of lexical access is a sequence of sounds.
Consequently, the mapping from meaning to sounds is one from a static (meaning) to a
dynamic (phonological) representation. Finally, the output is more than just a sequence of
phonological units. Rather, the retrieved phonological units are related to one another by
the syllabic and metrical organization of the word’s form.

Because of the complexity of the mapping from meaning to sound, theories of lexical
access often assume that this mapping occurs in two steps. In the first step,lemma
selection, a concept is mapped onto alemma, a nonphonological representation of a word.
Often, the lemma is assumed to be associated with the grammatical properties of the word,
its syntactic category and features such as gender or number. The second step,phono-
logical encoding, transforms the lemma into an organized sequence of speech sounds.
Probably the most intuitive evidence for these two steps comes from the tip-of-the-tongue
(TOT) phenomenon. A speaker knows that a word exists but cannot access its sounds. A
simple interpretation is that lemma selection has succeeded, but phonological encoding
has not. Recent support for this claim has come from studies showing that speakers in the
TOT state know the grammatical properties of the word being sought including, surpris-
ingly, the word’s grammatical gender (Miozzo & Caramazza, 1997; Vigliocco, Antonini,
& Garrett, 1997; see Caramazza, 1997 for an alternative view).

There has been considerable debate regarding the relationship between lemma selection
and phonological encoding. Some models assume that they are discrete, modular stages
(Levelt, 1989; Roelofs, 1996, 1997). Lemma selection is completed before any phono-
logical information is activated, and during phonological encoding, no semantic informa-
tion is consulted. Support for the modular view has come from studies showing that the
access of semantic information strictly precedes that of phonological information (van
Turennout, Hagoort, & Brown, 1997; Schriefers et al., 1990). However, other studies have
offered evidence that phonological encoding begins before lemma access is complete
(Cutting & Ferreira, 1999; Peterson & Savoy, 1998). Furthermore, speech errors such as
“Hungarian restaurant” for “Hungarian rhapsody,” or “snake” for “snail” suggest the
simultaneous activation of semantic or associative information and phonological infor-
mation. The first connectionist model that we present, theaphasia model, preserves the
distinction between lemma selection and phonological encoding, but denies that these are
modular stages. Instead, it allows later levels to begin processing before earlier ones have
finished (cascading) and for processing at later levels to influence that at earlier ones
(feedback).

The Aphasia Model

The aphasia model (Dell et al., 1997) was developed to explain the error patterns of
aphasic and nonaphasic speakers in picture naming experiments. 23 patients and 60
nonaphasic controls were given 175 pictures of simple objects and they had to pronounce
the object’s name (which was a noun for all the pictures). Errors were placed in five
categories. For example, assuming that “cat” is the target, errors could besemantic
(“dog”), formal (“mat” or “cap”), mixed(“rat,” both formally and semantically related),
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unrelated (“pen” or “log”), or nonwords(“lat,” also including nonwords bearing no
resemblance to the target such as “lom”).

Figure 1 shows the architecture of the aphasia model. There are three layers of units:
semantic features, words, and phonemes. Each word corresponds to a single unit in the
word layer. Bidirectional excitatory connections link words to their semantic features and
phonemes. In the implementation used by Dell et al., each word connected to ten semantic
features and three phonemes.

Lexical access is achieved by interactive spreading activation. Semantic units are
activated, this activation spreads throughout the network, and ultimately the sounds of the
intended word are retrieved. However, the model differs from classic interactive activation
models (e.g., McClelland & Rumelhart, 1981) in several respects. Most importantly the
aphasia model has two clear steps in the retrieval process, corresponding to lemma
selection and phonological encoding. We briefly describe these two steps using “cat” as
an example.

At the start of lemma selection, activation is added to the semantic features of the target
word CAT. The activation spreads for a fixed number of time steps according to a noisy
linear activation update rule. The bidirectional excitatory connections cause all three
network levels to become active. In addition to the target word unit, CAT, semantic
neighbors such as DOG become activated through shared semantic features. More
interestingly, words such as MAT receive activation by feedback from phonemes shared
with the target. When a mixed word such as RAT exists, it gains activation from both
shared semantics and shared phonemes. Consequently a mixed word is usually more

Figure 1. The aphasia model. Connections are excitatory and bidirectional.
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activated than a purely semantic or formal neighbor of the target. A decision process
concludes lemma selection. The most highly activated word of the appropriate grammat-
ical category (here, noun) is chosen. However, the process is not perfect. Because of
activation noise, there is some chance that a semantic, formal, or mixed neighbor of the
target (or even an unrelated word) will be selected.

The second step, phonological encoding, begins with a large boost of activation to the
chosen word unit. This boost introduces a nonlinearity into the model’s activation process,
which enables the network to handle the arbitrary mapping between semantic features and
phonemes. After the boost, activation continues to spread for another fixed period of time.
The most highly activated phonemes are then selected and linked to slots in aphonolog-
ical frame, a structure that represents the number and kind of syllables in the word and its
stress pattern. This linking concludes phonological encoding. Errors in phonological
encoding occur when, due to noise, one or more wrong phonemes are more active than
those of selected word. Typically such errors result in nonwords (e.g., “lat” for CAT) or
less often, form-related words (e.g. “mat” or “sat” for CAT). In principle, the other error
categories can also happen during phonological encoding, but the most common locus of
these errors in the aphasia model is lemma selection.

In applying the model to aphasic naming errors, Dell et al. (1997) made two critical
claims. First, they hypothesized that patient error patterns would fall between two
extremes: thenormal patternproduced by nonaphasic speakers, and arandom pattern
defined by theerror opportunitiesassociated with the error categories. The normal pattern
was estimated from the 60 control speakers’ data in the picture-naming task: Correct
responses (97%), semantic errors (1%), and mixed errors (1%) nearly exhausted all of the
relevant responses. The random pattern is the probability of each error type happening if
a person knew no words, only the rules of sound combination in English, and “randomly”
produced legal phonological strings in the picture-naming task. Dell et al. estimated these
error opportunities for English from a variety of sources. Roughly speaking, the random
pattern is mostly nonwords (80%) with the remaining responses being, in order of
likelihood, unrelateds, formals, semantic errors, and mixed errors. In claiming that the set
of possible patient error patterns falls between the normal pattern and the random pattern,
the aphasia model instantiated thecontinuity thesis, an idea that goes back at least to Freud
(1891/1953). Under this thesis, normal speech errors and aphasic paraphasias reflect the
same processes.

The second basic claim of the aphasia model concerns its mechanism for creating error
patterns between the normal and random patterns. The model’s lexicon was set up so that
its error opportunities matched the error opportunities estimated for English, and its other
parameters (noise, size of the activation boost to the selected word, connection weight,
decay, and time) were selected to give an error pattern that matched the normal pattern
(See Table 1). To create aphasic error patterns, the model was lesioned by limiting its
ability to transmit activation (reducing the connection weight parameter,p), its ability
maintain its activation pattern (increasing the decay parameter,q), or both. The lesions
create errors by reducing activation levels, which enhances the effect of noise. The greater
the extent of the lesion, the more the model’s error pattern approaches the random pattern.
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However, the weight and decay components to a lesion promote different kinds of errors.
A pure decay lesion is associated with more semantic, formal, and mixed errors (related
word errors), while a pure weight lesion promotes nonword and unrelated word errors. For
example, a weight lesion that reduces the model’s correctness to 30%, creates 41%
nonwords, 10% unrelated, 12% formals, 7% semantic, and 1% mixed. In contrast, a decay
lesion leading to 30% correct has an error pattern of 26% nonwords, 7% unrelated, 20%
formals, 13% semantic, and 3% mixed. Reducing weight makes the activation patterns on
each level less consistent with one another, and leads to what Dell et al. call “stupid”
errors. The production of a nonword reflects inconsistency between the word and phoneme
layers, whereas an unrelated word reflects inconsistency between the semantic and the
word level. When decay is increased without altering weight, errors tend to occur because
noise dominates the decayed activation levels. But many of the errors reflect successful
activation transmission among the levels because connection weights are still strong.
These are “smart” errors (mixed, formal, and semantic errors) in which the word level is
consistent with the semantic level or the phonological level is consistent with the word
level.

The aphasia model gave a good account of patient error patterns. Dell et al. successfully
fit the model to 21 of 23 fluent aphasic patients who were given the picture-naming test.
Figure 2 illustrates the overall fit by plotting each predicted and obtained error proportion
for all categories and patients. Table 2 shows the results for three patients, one fit with a
pure decay lesion, I.G., one with a pure weight lesion, L.H., and one with a lower level
of correctness, G.L.

Dell et al. then used the parameters assigned to the patients to make predictions. Here
we mention two of these. First, if a patient’s assigned connection weight was low they
should not exhibit error phenomena that the model attributes to excitatory feedback
between levels. The connection weights are just too low to support interaction between
layers. According to the model, interactive feedback causes mixed errors (e.g., RAT for
CAT) and formal errors that obey grammatical constraints (e.g., the noun MAT replacing
the noun CAT). In support of the prediction, only the patients that the model assigned
large weights to had significant tendencies to produce mixed errors and form-related
nouns. The second prediction concerned recovery. Ten patients were retested on the
naming test after one or more months. On average, the patients improved their perfor-
mance by 16%. The model was able to fit these improved error patterns as well as the

TABLE 1
Picture Naming Error Proportions from Control Participants and Simulated

Proportions from the Aphasia Model (from Dell et al., 1997)

Response Category

Correct Semantic Formal Nonword Mixed Unrelated

Controls .97 .01 .00 .00 .01 .00
Aphasia Model .97 .02 .00 .00 .01 .00

Note. Connection weight (p) 5 .1; Decay (q) 5 .5.
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original ones. More importantly, recovery seemed to involve a movement of affected
parameters toward normal values. Thus, recovery, or within-patient variation, takes place
along the same dimensions as those that characterize between-patient variation.

The good points of the aphasia model arise from its interactive activation architecture.
Interactive activation offers a natural mechanism for the error types and the model permits
graceful degradation through parameter alterations. The fact that the model fits normal and
patient error patterns provides support for both its general approach to lexical access and
for the claim that brain damage entails disruption in the abilities to transmit and maintain
activation. However, there are three key limitations in the aphasia model. First, it is not
sequential. The model’s phonemes are retrieved all at once, contrary to data (e.g., Meyer,
1991). Second, the network structure is not learned. Finally, the model assumes the
existence of pre-stored phonological frames that specify the syllabic and metrical structure

Figure 2. A comparison of error proportions from 21 patients and predicted proportion from the
aphasia model. Proportions are transformed by the natural log of the ratio of the proportion and the error
opportunities for each error category.

TABLE 2
Picture Naming Error Proportions from Selected Patients and Simulated Proportions

from the Aphasia Model (from Dell et al., 1997)

Patient/ Parameters

Response Category

Correct Semantic Formal Nonword Mixed Unrelated

I.G. .69 .09 .05 .02 .03 .01
p 5 .1, q 5 .86 .73 .13 .04 .05 .04 .01
L.H. .69 .03 .07 .15 .01 .02
p 5 .0057, q 5 .5 .69 .07 .06 .14 .01 .03
G.L. .28 .04 .21 .30 .03 .09
p 5 .079, q 5 .85 .27 .11 .20 .29 .03 .10
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of each word. While there may be considerable evidence for such frames (e.g., Sevald,
Dell, & Cole, 1995), the aphasia model neither implements nor explains them. The next
model that we present, thephonological error model, confronts these limitations.

The Phonological Error Model

The phonological error model (Dell, Juliano, & Govindjee, 1993) is an attempt to apply
PDP principles specifically to phonological encoding. The model uses a simple recurrent
network (Elman, 1990; Jordan, 1986) to map from a static representation of a word to a
sequence of phonological features. Figure 3 shows the architecture.

The input layer represented the word to be spoken. In different versions of the model,
the input was either a random bit vector (which can be viewed as either a lemma or a
semantic representation) or a vector that was correlated with the word’s form (either an
underlying phonological representation or the orthographic input from a reading aloud
task.) In both cases, the input remained unchanged during the production of the word. The
input activation passed through a hidden layer to an output layer of 18 phonological
features, one unit for each feature.

The phonological error model produces sequences of features by means of recurrent
one-to-one connections from the output and hidden layers to layers of context units. One
context layer is a copy of the hidden layer’s activation on the previous pass through the
network (internal context units) and the other corresponds to that for the output layer
(external context units). Specifically, the production of a word (here, CAT) goes like this:
The input units are activated in the pattern designated for CAT. The internal context units
are initialized to zero, and the external context units are set to a pattern that symbolizes
a word boundary (.5 on every unit). Activation spreads from the input and context units
to hidden units and then to the output phonological features. The target activation pattern

Figure 3. The architecture of the phonological error model. Each rectangle indicates a group of units.
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corresponds to the features of the first phoneme /k/. To the extent that the output deviates
from the target, weights are adjusted by backpropagation. The model’s output and hidden
layer activations are then copied to the external and internal context units, respectively.
The context units keep track of where the model is in the sequence. After the/k/is
produced, the context represents the state of already having produced that phoneme,
instead of the word-boundary state. This change in the context allows for the production
of /æ/ in the next forward pass of activation. The process continues for the remainder of
the word with the final target being the word boundary pattern.

The model was trained by repeatedly presenting words and adjusting weights. Dell et
al. trained several models on vocabularies of 50 to 412 short English words (1–3
phonemes), and examined how performance differed with training vocabulary and archi-
tecture. Here our concern is with the model’s ability to explain facts about phonological
speech errors.

Some speech error effects have been interpreted as evidence for aframe-and-slot
approach to word form retrieval (Shattuck–Hufnagel, 1979). Frame-and-slot models
separate the retrieval of a word’s sounds from the retrieval of a phonological frame. The
frame represents the number of syllables in the word and the location of stress. Within the
frame, each syllable is associated with slots that label the kind of sound (e.g., consonant
or vowel) that the slot may hold. Placing the retrieved sounds in the slots assembles the
word form. Recall that the aphasia model used an activation-sensitive version of this
mechanism; the phoneme units with the highest activation levels were selected by linking
them to frame slots.

The speech error effects that support the idea of a separate frame include the following:
the phonotactic regularity of errors, syllabic constituent effects, and the existence of sound
exchanges. Here we define these and explain why they are supportive of separately
representing sounds from the structures in which they occur. First, phonological errors
have a strong tendency to follow the phonotactic patterns of the language. Thus, in
English, one would not expect to see slips such as “king” to “nging” because syllable-
initial /ng/ does not occur in English. The phonotactic regularity of errors has been
attributed to phonological rules that guide the insertion of retrieved sounds into frame
slots. Presumably in English, the insertion of /ng/ into an onset slot would be blocked.

Syllabic constituent effects concern which parts of syllables are most likely to slip.
Syllables are thought to have a hierarchical onset-rime structure in which, for example, a
CVC syllable is composed of a C onset and a VC rime. Speech errors reflect this structure.
For a CVC syllable, one is more likely to see a slip of either an onset (C) or a rime (VC)
than other combinations such as the CV part of a CVC syllable. For example, the error
“Tup Kin” instead of “Tin Cup” involves the movement of rime constituents. Because the
constituent structure of syllables is often assumed to be a property of phonological frames,
these effects support phonological frames.

Some phonological errors involve the exchange of speech sounds (e.g., “heft lemi-
sphere”). Although these are not very common—only 5–10% of phonological errors are
exchanges—they are clearly not random events. Rather, an initial anticipatory substitution
(“left” being spoken as “heft”) appears to cause another substitution, typically in the next
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word, in which the replaced sound replaces the anticipated sound (“lemisphere”). The
existence of exchanges suggests the action of phonological frames. Each sound was
erroneously placed in the other’s frame slots.

The phonological error model accounts for some of the error effects attributed to
separate phonological frames although it lacks explicit frames. When noise is introduced
into the model’s weights, it produces realistic phonological errors. Specifically, erroneous
phoneme sequences in the model have a strong tendency to be phonotactically regular.
The percentage of errors that were phonotactically legal in the model ranged between 87
and 100%. Moreover, the errors tend to involve the hypothesized frame constituents. The
model produces more syllable onset than syllable coda errors, and it produces more rime
(VC) errors than CV errors. In general, the model’s errors are sensitive to the structure of
English words because it is trained on English words and it represents those words with
linguistically motivated features (see Anderson, Milostan, & Cottrell, 1998). The super-
imposed weight changes associated with the training set creates sequential schemata,
pathways in the model’s activation space that reflect common sequences of features. When
the model errs, it sticks close to these pathways. Thus, the errors obey English phono-
tactics. The reason that the model’s errors tend to involve onsets rather than codas is a
consequence of both the English vocabulary and the model’s sequential nature. There is
more variety in word and syllable onsets than in codas. Hence there is more uncertainty
about onsets, which makes them more error prone. This difference in uncertainty is
enhanced by the sequential nature of the model. At the beginning of a word, the context
units’ activation state is uninformative about the phoneme to be retrieved. However, as the
model produces more of the word, the context units become more informative. For
example, after having already retrieved /kæ../ the possible continuations are much fewer
than before. That the model’s errors tend to involve VC (rime) units more than CV units
is also due to the vocabulary structure. English, like most languages, tends to have fewer
VC’s than CV’s (Kessler & Treiman, 1997) and consequently must “reuse” the VC’s that
it does have. In the model the VC’s that are present thus become part of well-worn paths.
When output jumps from one such path to another, a slip of an entire VC results.

The main problem with the phonological error model is that it has no mechanism for
exchanges. The model could conceivably produce an anticipatory substitution such as
“heft” for “left” in the context of “left hemisphere” through contamination from an
upcoming word. But such an error would not naturally trigger a subsequent substitution
to make the exchange “heft lemisphere.” The very fact that exchanges occur between
structurally similar sounds points to a mechanism that binds values (retrieved sounds) to
variables (slots in a frame). Specifically, in localist activation-based models with frames
(e.g., Berg & Schade, 1992; Dell, 1986; Hartley & Houghton, 1996; Stemberger, 1985;
MacKay, 1982), an exchange such as “heft lemisphere” can happen as follows: First, the
activation of the /h/ node is greater than that of /l/ and so replaces it in the frame slot for
the onset of the first syllable. The selected sound, /h/, then undergoes inhibition, which
tends to prevent its reselection. When the onset slot of the next syllable is filled, the /l/,
which did not undergo inhibition, may be more active than the inhibited /h/, and thus
replace it completing the exchange. The phonological error model does not have this kind
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of mechanism, or any other in which a substitution in one syllable triggers a corresponding
substitution in a later syllable.

The phonological error model’s failure to produce exchanges is a serious problem. It
leads us to question its architecture. However, it does not cause us to abandon many of the
principles present in the model. For example, the model attributes several error effects to
the statistical structure of the word-form lexicon and to the fact that sounds are retrieved
in sequence by means of a dynamic context. We believe that this attribution is correct. So,
regardless of the architecture of the phonological access system, it should, in our view,
embody mechanisms for sensitivity to sound statistics and sequence.

Before we turn to grammatical encoding, we should make a few observations about
both of the lexical access models that we have reviewed. The aphasia model and the
phonological error model are, at least on the surface, quite different. The former is a
two-step interactive activation model that retrieves position-specific phonemes in parallel
and links them to slots in a frame. The latter is a PDP simple recurrent network that learns
distributed representations allowing for the sequential output of phonological features.
Moreover, the phonological error model deals only with phonological processes, while the
aphasia model does both lemma and phonological access.

Given these differences between the models, it is useful to consider how the phono-
logical error model’s approach could be extended to deal with the larger domain of the
aphasia model. In fact, Plaut and Kello (1999) have constructed such a model. Their model
learned to map from representations of word meaning to sequences of articulatory gestures
by using error signals emerging from knowledge acquired during word comprehension.
The resulting model has two key features of the aphasia model. First, connections run
from semantics to phonology and in the reverse direction, making the activation flow
interactive. Second, the model has something very much like two steps when it produces
a word. This is because the intermediate layer must achieve its proper activation pattern
before a sequential articulation process can begin. So, the first step involves retrieval of
a static representation, and the second consists of turning that representation into a
sequence.

The two steps in Plaut and Kello’s model, however, are not the two steps of the aphasia
model. The aphasia model’s first step is retrieval of a word’s lemma, while Plaut and
Kello’s model’s first step is retrieval of a static phonological representation. It is difficult
to tell whether these differences are fundamental or not because Plaut and Kello made no
claims about grammatical processes. It may turn out that the “lemma” is a static
representation at an intermediate level that serves both as input to a sequential phono-
logical output process and as output from processes that map from messages onto word
sequences. If so, then there is a great deal of concordance between the models. More
generally, we believe that models such as the aphasia model are high level characteriza-
tions whose insights will be useful for understanding PDP implementations such as Plaut
and Kello’s model or the phonological error model. In the final section of this article, we
ask whether a PDP model of grammatical encoding, one that shares many characteristics
with the Plaut and Kello and phonological error models, can handle facts about the
production of sentences.
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III. GRAMMATICAL ENCODING

Like phonological encoding, grammatical encoding has often been conceptualized in
terms of frames and slots based on patterns found in speech errors. In frame-and-slot
models of grammatical encoding (e.g., Bock, 1982; Dell, 1986; Garrett, 1975; MacKay,
1982), frames represent syntactic structures with slots labeled with the grammatical
classes (e.g., noun or verb) of the lemmas that may fill them. Analogous to the phonotactic
regularity of sound errors is the grammaticality of word substitutions. Word substitutions
and exchanges tend to involve words of the same grammatical class, such as “please pass
the fork,” in which “fork” replaces “salt,” keeping the utterance grammatical while
altering its meaning (Garrett, 1975). Within a frame-and-slot model, exchanges across
grammatical classes such as “pleasesalt thepass” are unlikely because they involve two
violations: a noun in a verb slot and a verb in a noun slot.

Recall that the phonological error model accounted for phonological structural effects
by means of a learning mechanism that derived structure from the statistics of the training
set rather than from explicit word frames. Perhaps an analogous approach to sentence
learning could be used to study grammatical structure. However, there are many differ-
ences between sentence and word production that make grammatical encoding a more
difficult process to model. Here we will review some of these differences as part of a
summary of psycholinguistic research into sentence production, and then describe a new
model of sentence production, thestructural priming model(Chang, Griffin, Dell, &
Bock, 1997), which attempts to explain some structural effects using a connectionist
model of learning.

Most sentences are novel, while most words are not. One speaks of “retrieving” a
word’s form from memory, but of “generating” a sentence. Consequently, a greater
emphasis must be placed on the generalization ability of a sentence-production model than
on one that produces word forms. To get the right kind of generalization, one must first
understand the nature of the input to production, the message, and then consider the
mapping from the message to a word sequence. Because of the arbitrary but fixed mapping
between a word’s meaning and its sound, the input to phonological encoding can be a
unique representation lacking internal structure, as in the aphasia model’s words. In
contrast, a message logically must possess internal structure to support generalization to
novel utterances. The message must contain sufficient information about its elements to
allow appropriate words to be selected and must express the relations among those
elements—who did what to whom. The difficulty for the modeler lies in how to represent
this information. Debates within linguistics have provided a wealth of ideas about what
information is necessary in a representation of sentence meaning. But psycholinguistic
research on the nature of message representation is scanty (see, however, Bock &
Eberhard, 1993; Slobin, 1996).

An important feature of the mapping between messages and grammatical forms is its
variability. First, there is lexical variability. Unlike word forms, which are usually
unambiguously associated with the same sounds, there may be many ways to map between
message elements and words. A cat can be “cat,” “animal,” “Spot,” “it,” and so on.
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Second, a message can be realized by different syntactic structures without changing its
core meaning. For example, when no particular element is in focus, the same proposition
could be expressed with an active (“The horse kicked the cow”) or a passive sentence
(“The cow was kicked by the horse”). When this syntactic flexibility is combined with
flexibility in word choice, very similar statements can be made using very different
syntactic structures, as in “Clinton defeated Dole,” “Dole lost to Clinton,” “Dole was
defeated by the president,” and so on.

If messages do not determine word order, what does? In English, the assignment of
lemmas to grammatical roles (e.g., subject, direct object) is the primary determinant of
eventual word order and grammatical role assignment depends on the ease of lexical
encoding. Evidence comes from studies showing lexical priming effects on grammatical
role assignments (Bock, 1986b, 1987a). The easier it was to select a word to express a
substantive concept, the more likely it was to be encoded as a sentential subject. This
result implies that noun phrases are assigned to grammatical roles in the order in which
their lemmas are selected and in the order of grammatical role prominence (subject, then
direct object, then object of preposition). Moreover, more conceptually available message
elements (by virtue of being more topical, imageable, animate, or prototypical) are placed
in more prominent grammatical roles than are less accessible elements (e.g., Bock &
Warren, 1985; Ferreira, 1994). Such conceptual factors probably influence grammatical
role assignment indirectly by taking priority in lemma selection. Together, these findings
indicate that grammatical encoding is highly opportunistic; the most prominent message
elements are the first to be lexicalized and the earliest lexicalized concepts are assigned to
the earliest occurring grammatical roles, such as sentential subject.

However, more than conceptual and lexical accessibility affect word order and sen-
tence structure. Studies conducted by Bock and colleagues (Bock, 1986a; Bock & Loebell,
1990) demonstrate the existence ofstructural priming: Speakers tend to repeat the
structures of previously uttered sentences even when the sentences differ in prosodic,
lexical, and conceptual content. For example, speakers are more likely to describe the
event depicted in Figure 4 with a passive, such as “A policeman is being hit by an
ambulance,” if they just produced a sentence that was passive rather than active. Further-
more, this increase in the use of one structure does not appear to be caused by strength-
ening links between grammatical role assignments and event roles (e.g., agent, patient) in
the message (Bock & Loebell, 1990). Intransitive-locatives (“The 747 was landing by the
control tower”) and passives (“The 747 was landed by the control tower”) differ primarily
in the event roles that their constituents play (e.g., whether the sentential subject is the
agent). Nevertheless, a speaker is as likely to use a passive structure after producing an
intransitive-locative prime as after a passive prime. This suggests that the link between
grammatical and event roles is not the locus of structural priming. Rather, the priming
appears to be related to the constituent structure of the sentences (e.g., whether there is a
prepositional phrase after the main verb). Furthermore, results of a study by Bock,
Loebell, and Morey (1992) suggest that conceptual factors influence when elements are
lexicalized and assigned grammatical roles, while structural accessibility has an indepen-
dent influence by affecting the type of grammatical roles that are filled (e.g., subject and
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direct object for actives, or subject and object of preposition for passives and intransitive-
locatives). Thus, grammatical encoding cannot be accomplished by blindly assigning
lemmas to grammatical roles as concepts are lexicalized. Lemmas must be marked with
event-related information to ensure that the relationship between message elements is not
lost, otherwise an agent could easily become the subject of a passive sentence. This has
been called the coordination problem (Bock, 1987b) and poses difficulties for all models
of grammatical encoding.

In summary, grammatical encoding is a particularly challenging process to model for
several reasons: (1) Little is known about its input representation, except that its internal
structure must permit generalization. (2) The mapping between concepts and words is
variable, as is the mapping between message relationships and grammatical roles. (3) The
assignment of grammatical roles is constrained but not determined by message relation-
ships. (4) There are structural priming effects of a character that suggest structural frames.
A connectionist learning model overcoming these challenges needs to demonstrate struc-
tural effects without possessing explicit structures, role-binding without explicit tags or
grammatical roles, and must make flexible and opportunistic decisions in the choice of
words and structures.

Fortunately, some aspects of grammatical encoding may be readily accounted for
within a connectionist framework. Recent studies indicate that the influence of a prime
sentence persists across the production of up to 10 structurally unrelated sentences (Bock,
Dell, Griffin, Chang, & Ferreira, 1996). This result suggests that priming may be a type

Figure 4. Example of a target picture and active and passive prime sentences (Bock; 1986a).
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of implicit learning rather than the result of activation of structures in short-term memory.
If so, connectionist-learning models associated with gradual weight change may be able
to explain some features of priming. Furthermore, Elman (1993) demonstrated that a
recurrent network could implicitly learn grammatical structure when trained to anticipate
the next word in a sentence. The structural-priming model (Chang et al., 1997) to which
we now turn, employed a related architecture in an attempt to produce grammatical
sequences from a message and mimic the structural priming effect.

Structural Priming Model

The central claim of the structural-priming model is that structural priming is a form of
implicit learning. In other words, the same mechanism through which the model learns to
produce sentences causes the priming. To realize this claim, it was necessary to make the
model accord with three basic assumptions about production. These are, first, production
starts with a message expressing propositional content. Second, message elements may
differ in their accessibility and these differences contribute to structural choices. Third,
words are selected one at a time, with earlier selections constraining later ones, that is,
processing is incremental and left-to-right. To reflect these assumptions, the model used
a type of simple recurrent network that learned to map from a static message to a sequence
of words, and it allowed for differential activation levels among message elements to
determine the target sequence.

In this framework, structural priming results from the learning algorithm, which was
backpropagation. When a prime sentence is produced, weight changes take place which
favor the production of that sentence from its message. Chang et al.’s hypothesis was that
these changes would generalize to structurally related sentences. So, a subsequent mes-
sage that may be associated with more than one structure, such as an active/passive or
double-object/prepositional dative option, would be more likely to be encoded using the
structure of the prime. This is possible because the weight changes associated with a
particular message-sentence mapping are shared with other message-sentence combina-
tions.

Figure 5 illustrates the general theory behind the model. Like some other connectionist
treatments of language (e.g. Christiansen & Chater, 1999; Plaut & Kello, 1999), Chang et
al. propose a close relationship between the comprehension and production. In particular,
they suggest that the context representations that guide sequential production arise during
comprehension. For example, suppose that a simple recurrent network that maps word
sequences onto messages carries out comprehension, and that this network uses the
activation pattern of its hidden units as context to facilitate this mapping. We know that
the changes in the activation patterns of these hidden units would come to be sensitive to
the structure of input sentences (Elman, 1993) and to the mapping of this structure onto
meaning. Chang et al. hypothesized that these hidden unit/context activation patterns
could be directly used during production in the following way: At the beginning of a
sentence to be produced, the context units would be set to null values indicating a sentence
boundary. The production side of the model would then output the first word. This word
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would be fed into the input of the comprehension side of the model, thereby updating the
context units’ activations. These activations would then serve as contextual input to
production, effectively signaling the system that it is now time to produce the second
word, and so on until the end of the sentence.

We now describe Chang et al’s implemented model and their simulations of the
structural priming effect. As Figure 5 shows, Chang et al., did not actually implement the
comprehension side of their model. Rather they attempted to approximate the contribution
from comprehension by creating a localist transition network and using it as context for
production. This transition network will be described after we introduce other aspects of
the implemented model.

The input to the model was a message, a set of localist semantic features representing
a single proposition. The message was an 87-dimensional vector that represented concepts
such as “boy,” actions such as “walking,” and the event roles,agent, patient, recipient,
andlocation. The message remained activated throughout the production of the sentence.
The relationships among the message participants involved associating blocks of features
with event roles. So, within the agent block, there were 18 units including units for
CHILD, MALE, and UNITARY. The patient, recipient, and location blocks also had 18
units each and these coded for the same features as the agent block. The action block had
15 features. These included localist units for specific actions such as WALKING,
GIVING, or CHASING, and their number of arguments. For example, the message
CHASE (BOYS, DOG) would be associated with activated agent units CHILD, MALE,
MULTIPLE, patient units, BARKS, ANIMAL, UNITARY, and action units CHASING
and 2-ARGUMENT.

Differences in conceptual accessibility were implemented by having the features of one
role more activated than others. These differences determined the target structure of
sentences during training. Given filled agent and patient roles, and a transitive action, the

Figure 5. Comprehension can provide the dynamic context for production (Chang et al., 1997).
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model was trained to produce an active sentence if the agent was more activated than the
patient, and a passive if the reverse was true. A message for the production of a
double-object dative sentence, as opposed to a prepositional dative sentence, differed only
in whether the patient or recipient was more highly activated.

The message units had learnable connections to 50 hidden units which, in turn, had
learnable connections to the model’s output layer. In the output layer, there was one unit
for each of the 59 words in its vocabulary. These included singular and plural nouns (12
of each), 2 obligatorily transitive verbs, “chase(s)” and “feed(s)”; 2 optionally transitive
verbs, “see(s)” and “hear(s),” 2 intransitive verbs, “walk(s)” and “live(s),” and 4 dative
verbs, “give(s),” “make(s),” “show(s),” and “write(s).” Each verb that could be used
transitively also had a past participle form (e.g. “heard”) and each verb that could be used
intransitively had a present participle form (e.g. “living”). There were also units foris, are,
by, near, for, to, andPERIOD(end of sentence marker). Verbs had to agree with subject
nouns in number. Table 3 gives examples of the sentences that the model was trained to
produce.

The transition network served as another input layer to the model. It reflected the
current state of the sentence from the perspective of the comprehension system. This
network contained 10 localist nodes representing the following syntactic and event role
categories: PERIOD, VERB, AUX, PastParticiple, PresentParticiple, PREP, AGENT,
PATIENT, RECIPIENT, and LOCATION. Each of these nodes had connections with
modifiable weights to each hidden unit. The activation of the transition network’s nodes
changes as the sentence progressed. Table 4 shows which nodes would activate and when
they would activate for particular sentence types. Consider, for example, the sentence,
“Girls give man robot.” Before any word has been produced, the sentence boundary node
PERIOD is the only unit in the transition network that is on. (Note that this PERIOD is
different from the output layer unit forPERIOD). So, the input to the model consists of

TABLE 3
Sentence Types Used in the Structural Priming Model

Sentence Type
Percent in
Training Structure Sequence

Intransitive 17 AGENT VERB.
Girl walks.

Active transitive 27 AGENT VERB PATIENT.
Man chases dog.

Passive transitive 9 PATIENT AUX PASTPART by AGENT.
Dog is chased by man.

Double object dative 17 AGENT VERB RECIPIENT PATIENT.
Woman gives man dog.

Prepositional dative 17 AGENT VERB PATIENT PREP RECIPIENT.
Woman gives dog to man.

Intransitive locative 4 AGENT AUX PRESPART PREP LOCATION.
Boys are walking near bus.

Transitive locative 9 AGENT VERB PATIENT PREP LOCATION.
Girls chase dogs to car.
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just PERIOD plus the appropriate message representation. Under these conditions, the
model should produce “girls.” The word “girls” is then assumed to pass to the compre-
hension system, which would determine that it is likely an agent or possibly a patient. This
interpretation by the comprehension system was implemented by turning on the nodes for
AGENT and PATIENT in the transition network. (See, in Table 4, that for double object
datives, the first transition is from PERIOD to [AGENT PATIENT].) The node for
PERIOD would also remain partly on. Each transition network node retained half of its
activation across the production of each additional word. Notice that the ambiguity
associated with the role assignment for “girls” is only from the comprehension system’s
perspective. The message on the production side knows that “girls” is the agent. The state
of AGENT and PATIENT on and PERIOD half on then signals for the production of the
next word, “give.” The comprehension of “give” turns on the VERB unit, which then
enables the production of “man.” Again, because of ambiguity, the comprehension system
does not know whether “man” is RECIPIENT or PATIENT, and so both of these units
then turn on. The process continues with the production of the final word “robot,” which
is now unambiguously identified as a PATIENT. Because the comprehension system is
controlling the state changes of the context, there is no need to relearn the sentence
patterns during production. However, the production system does have to learn how to
associate these patterns with messages to produce sequential output. An important
consequence of using a context derived from the comprehension system is that the
contextual states are associated with temporary ambiguity (here, ambiguity about event
roles of noun phrases). According to Chang et al., this ambiguity contributes some error
to the production side of the model which in turn makes for greater weight change on that
side, and ultimately to sizable structural priming due to those weight changes.

The model was trained using backpropagation. Weights were initialized to normally
distributed random values with mean 0 and variance .5. The training corpus consisted of

TABLE 4
Sequence of Activated Units in the Transition Network for Context in the Structural

Priming Model for Each Sentence Type

Intransitive
PERIOD 3 {AGENT PATIENT} 3 VERB 3 PERIOD

Active transitive
PERIOD 3 {AGENT PATIENT} 3 VERB 3 PATIENT 3 PERIOD

Passive transitive
PERIOD 3 {AGENT PATIENT} 3 AUX 3 PastP 3 PREP 3 AGENT 3 PERIOD

Double object dative
PERIOD 3 {AGENT PATIENT} 3 VERB 3 {RECIPIENT PATIENT} 3 PATIENT 3 PERIOD

Prepositional dative
PERIOD 3 {AGENT PATIENT} 3 VERB 3 {RECIPIENT PATIENT} 3 PREP 3 RECIPIENT 3
PERIOD

Transitive locative
PERIOD 3 {AGENT PATIENT} 3 VERB 3 {RECIPIENT PATIENT} 3 PREP 3 LOCATION 3
PERIOD

Intransitive locative
PERIOD 3 {AGENT PATIENT} 3 AUX 3 PresP 3 PREP 3 LOCATION 3 PERIOD
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3600 sentences reflecting the proportions of sentence types shown in Table 3. Each of
these was trained an average of 31 times. The learning rate for the first quarter of the
training was .06, and .03 for the remainder. Momentum was .9.

The 3600 training sentences represented a fraction of the 175,152 sentences that were
possible given the vocabulary and sentence types. Aside from the fact that actives
occurred more frequently than passives, the proportions of each sentence type in the
training set were not designed to reflect the relative frequencies of the structures in natural
language. After the model learned, it was tested on a random set of 400 sentences that
preserved the proportion of sentence types in the corpus. 74% of these were novel
sentences (66% of the non-novel sentences were intransitives because there is less
opportunity for variety with this type). The model accurately produced the correct word
94% of the time.

To test priming, the model was first given a priming trial consisting of a message that
required either a simple active or a passive sentence (in the case of datives, a double-object
or prepositional dative sentence). As in training, weights were adjusted as the sentence
was produced using a learning rate of .03. Then the model was given a target message that
was neutral with respect to conceptual accessibility. For a transitive message, the agent
and patient were equally activated, and correspondingly for the patient and recipient of a
dative message. For the datives, each prime and target was a novel message, one that had
not been previously trained. For transitives, one-fourth of the test messages had been
trained before. Chang et al. recorded the percentage of times that each structure was
produced as a function of the prime, the differences being the measure of priming.

The model exhibited a fair amount of structural priming. For example, “Boys chase
dogs” as a prime would promote “Girl feeds cat” over “Cat is fed by girl.” Figures 6 and
7 show the magnitude of active-passive and dative priming from Bock et al. (1996) and
from the model. The sizes of the priming effects in the model match up well with the data.
The absolute percentage of propositional datives, though, is lower in the model than in the
data. Pictures in the experiment were selected so that alternating structures were used
equally often on average. No such constraint was applied to the model. The figures also
show the model’s successful simulation of the persistence of priming over 10 intervening
neutral sentences (Bock et al., 1996). Thus, the model exhibits the phenomenon that
motivates an account of priming as implicit learning. The same type of weight changes
used in learning caused persistent structural priming.

Chang et al. also investigated whether the model could simulate the effects of Bock and
Loebell (1990), who showed that priming is centered on the surface syntactic structure of
the prime, rather than its mapping from event to grammatical roles. Here, the model’s
success was more checkered. It showed priming between intransitive locatives such as
“boys are walking near bus” and the thematically different but structurally similar passive
(“dog is chased by man”), in agreement with Bock and Loebell. However, it failed to show
priming between transitive locatives such as “girls chase dogs near car” and prepositional
datives, which Bock and Loebell had found.

In summary, the structural priming model successfully realizes the hypothesis that
priming is a form of implicit learning. Moreover, it shows that structural priming may be
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compatible with sequential connectionist models that derive structure from experience.
Interestingly, Chang et al. believe that this structure must come from learning to com-
prehend, as well as learning to produce. The reasons that the model fails to account for the
totality of the priming data are, of course, difficult to ascertain. However, we believe that
its assumptions about message structure may be partly responsible. For example, the
model assumes separate banks of message units for the four event roles that it uses. This
assumption has some unrealistic consequences. First, it denies the possibility that roles
have a similarity structure, for example, locations are like recipients (see Jackendoff,
1972). Second, it treats roles as categories that are independent of actions, contrary to
some modern theories (e.g., Pollard & Sag, 1994). In general, connectionist models are
ultimately only as good as their assumptions about input and output representations.

Figure 6. Dative priming over intervening sentences. The data are from Bock et al. (1996).
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Progress in models of grammatical encoding is therefore dependent on the development
of knowledge about meaning and communication.

Before concluding, let us briefly consider how the structural priming model might
relate to the two lexical access models. First, consider the structural priming model’s
relation to the aphasia model. The aphasia model has a layer of lemma nodes that are
actively selected and inserted into syntactic frames. The hidden layer of structural priming
model may be seen as approximating the result of this selection and insertion process, with
the contribution of the frame being associated with the context representations. However,
these similarities between the models should not be overstated. For example, the context

Figure 7. Active/passive priming over intervening sentences. The data are from Bock et al. (1996).
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representations of the structural priming model are not pure syntactic frames, something
that is made evident by the model’s failure to show priming between the structurally
identical prepositional datives and transitive locatives.

Next, consider the structural priming model in concert with the phonological error
model. They are both recurrent network models and it is tempting to just link them up, the
output of the structural priming model providing input to the phonological error model.
Such a linkage, however, creates independent phonological and grammatical modules and
hence does not allow for interaction between phonological and lexical representations,
which we argued (through the aphasia model) was needed to explain interactive error
effects. Another point about the two recurrent network models concerns exchanges. Recall
that the phonological error model does not produce exchanges such as “cogs and dats” for
“dogs and cats.” It turns out that the structural priming model does (rarely) produce word
exchanges, e.g. “Dog is chased bycat ” as a blend of two possible correct sentences “Dog
chases cat” and “Cat is chased by dog.” One can speculate that what is lacking in the
phonological error model is an analogous mechanism at the phonological level—a conflict
between two alternativecorrect outputs, along with a constraint that tries to have each
intended output unit (word or phoneme) occur just once in the output sequence. Perhaps,
a combination phonological/grammatical model that is associated with alternations such
as “cats and dogs” versus “dogs and cats” could produce “cogs and dats.” In fact, this
conflict account of phonological exchanges is not new. It is the competing plan hypothesis
of Baars (1980) and is even similar to Freud’s (1891/1953) ideas on speech errors.

IV. CONCLUSIONS

Our review of connectionist models in production has focussed on our recent work in
lexical access and grammatical encoding. Our lexical access models, when considered
together with other spreading activation models (e.g., Roelofs, 1997), provide a fair
coverage of the data. One would expect so, because these kinds of models have been
around for some time. The main problem is that different models have different strengths
and weaknesses, and so there is no unified approach that has been shown to do the job.
Work on models of grammatical encoding, however, is just beginning, and so what has
been accomplished is exciting (at least to us), although quite limited.

We consider two key features of production to be serial output and sensitivity to
linguistic structure. In the PDP recurrent network models, structure and order are entwined
in the sequential schemata that develop from the superimposed weight changes associated
with the training set. It remains to be seen whether these schemata have the right
characteristics to support generalization in grammatical encoding (e.g., the right kind of
structural priming), or account for the sequential structure of word-forms (e.g., exhibit
phonological exchange errors).

Ultimately, we believe that connectionist models of the acquisition of the skills of
speaking (and comprehending) will contribute to explanations of the nature of language—
why it is the way it is (see, e.g., Christiansen & Devlin, 1997; Hare & Elman, 1995; Gupta
& Dell, 1999). Moreover, we believe the PDP approach offers the best chance to explain
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production as a skill, as something that one learns to do over years of experience. Perhaps
most importantly, a PDP approach to language production expresses its commonalties
with other linguistic, and even nonlinguistic, skills.
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