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Abstract

We are capable of drawing a variety of inferences effortlessly, spontaneously, and with remarkable
efficiency — as though these inferences are areflexresponse of our cognitive apparatus. This remark-
able human ability poses a challenge for cognitive science and computational neuroscience: How can
a network of slow neuron-like elements represent a large body of systematic knowledge and perform
a wide range of inferences with such speed? The connectionist modelShruti attempts to address this
challenge by demonstrating how a neurally plausible network can encode a large body of semantic and
episodic facts, systematic rules, and knowledge about entities and types, and yet perform a wide range of
explanatory and predictive inferences within a few hundred milliseconds. Relational structures (frames,
schemas) are represented inShrutiby clusters of cells, and inference inShruticorresponds to a transient
propagation of rhythmic activity over such cell-clusters whereindynamic bindingsare represented by
the synchronous firing of appropriate cells.Shrutiencodes mappings across relational structures using
high-efficacy links that enable the propagation of rhythmic activity, and it encodes items in long-term
memory as coincidence and conincidence-error detector circuits that become active in response to the
occurrence (or non-occurrence) of appropriate coincidences in the on going flux of rhythmic activity.
Finally, “understanding” inShruticorresponds to reverberant and coherent activity along closed loops
of neural circuitry. Over the past several years,Shruti has undergone several enhancements that have
augmented its expressiveness and inferential power. This paper describes some of these extensions that
enableShrutito (i) deal with negation and inconsistent beliefs, (ii) encode evidential rules and facts, (iii)
perform inferences requiring the dynamic instantiation of entities, and (iv) seek coherent explanations of
observations.

Keywords: knowledge representation; inference; evidential reasoning; dynamic binding; temporal syn-
chrony.

1 Introduction

We are capable of drawing a variety of inferences effortlessly and with remarkable efficiency. To wit, our
ability to understand language in real-time — a task that requires the hearer to draw a number of inferences in
order to establish referential and causal coherence, generate expectations, make predictions, and recognize
the speaker’s intent.1 Nevertheless we can understand language at the rate ofseveral hundred words per

1Empirical data suggests that inferences required to establish referential and causal coherence occur rapidly and automatically
during text understanding (see e.g., McKoon and Ratcliff 1980; McKoon and Ratcliff 1981; Keenan, Baillet, and Brown 1984).
The evidence for the automatic occurrence ofelaborativeor predictive inferences however, is mixed (see e.g., Kintsch 1988; Potts,
Keenan, and Golding 1988).
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minute. This rapid rate of language understanding suggests that we are capable of performing a wide range
of inferences rapidly, spontaneously and without conscious effort — as though they are areflexresponse of
our cognitive apparatus. In view of this, such reasoning may be described asreflexivereasoning (Shastri,
1993).

This remarkable human ability poses a challenge for cognitive science and computational neuroscience:
How can a system of simple and slow neuron-like elements represent a large body of systematic knowledge
and perform a wide range of inferences with such speed?

In 1989, Ajjanagadde and Shastri proposed a structured connectionist2 modelShruti3 which attempted to
address this challenge and demonstrated how a network of neuron-like elements could encode a large body
of structured knowledge and perform a variety of inferences within a few hundred milliseconds (Ajjanagadde
and Shastri, 1989, 1991; Ajjanagadde, 1990; Shastri and Ajjanagadde, 1990a, 1990b, 1993; Shastri, 1992).
D.R. Mani made several contributions to the model (Mani and Shastri, 1993), wrote the firstShrutisimulator,
and developed a parallel implementation ofShrution the CM-5 (Mani, 1995).

Shrutishows that reflexive inference can be the spontaneous and natural outcome of a neurally plausible
system. InShruti there is no separate interpreter or inference mechanism that manipulates and rewrites
symbols. The network encoding of commonsense knowledge is a vividmodelof the agent’s environment
and when the nodes in this model are activated to reflect a given state of affairs in the environment, the model
spontaneouslysimulatesthe behavior of the external world, and in doing so, finds coherent explanations and
makes predictions. In particular,Shrutisuggested that

� the encoding of relational knowledge (frames, predicates, etc.) is mediated by neural circuits com-
posed offocal cell-clusters,

� inference involving relational knowledge corresponds to a transient propagation ofrhythmicactivity
across such focal-clusters,

� a binding between a conceptual role and an entity filling that role in a given situation is represented
within this rhythmic activity by thesynchronousfiring of appropriate cells.4

� a systematic mapping between relational structures — and other rule-like knowledge — is encoded
by high-efficacy links between focal clusters that enable the propagation of rhythmic activity, and

� a fact in long-term memory (LTM) is encoded as a temporal pattern-matching circuit that detects
coincidences and coincidence failures in the ongoing flux of rhythmic activity.

The possible role ofsynchronousactivity in neural representations and binding had been suggested by
several researchers (e.g., Milner, 1974; von der Malsburg, 1981; Sejnowski, 1981; Abeles, 1982; Crick,
1984; Damasio, 1989), butShruti offered a detailed computational account of how such activity can be
harnessed to solve problems in the representation and processing of high-level conceptual knowledge and
inference. While the role of synchronous activity in the brain remains a matter of debate and controversy, a
rich body of neurophysiological data suggests that such activity occurs in the brain and might even play a
role in neural information processing (e.g., see Eckhorn, Bauer, Jordan, Brosch, Kruse, Munk, and Reitbock,
1988; Gray, Konig, Engel, and Singer, 1989; Murthy and Fetz, 1992; Abeles, Bergman, Margalit, and
Vaadia, 1993; Singer, 1993; Singer and Gray, 1995; deCharms and Merzenich, 1996; Usher and Donnelly,

2For an overview of the structured connectionist approach and its merits see (Feldman and Ballard, 1982; Feldman, 1989;
Shastri, 1995).

3http://www.icsi.berkeley.edu/�shastri/shruti/index.html
4Several other solutions to the binding problem within a connectionist framework have been proposed (e.g., Lange and Dyer,

1989; Smolensky, 1990; H¨olldobler, 1990; Barnden and Srinivas, 1991; Sun, 1992). The advantages of the synchrony approach
over some of these approaches are discussed in (Shastri, 1996).



Lokendra Shastri Advances inShruti 3

1998). Over the past few years, several models that also use synchrony to encode dynamic bindings during
inference have been proposed (e.g., Park, Robertson, and Stenning, 1995; Sougne, 1996; Hayward and
Diederich, 1997; Hummel and Holyoak, 1997).5

Over the past five years,Shrutihas been augmented in a number of ways in collaborative work between
the author, his students, and other collaborators (see below). These enhancements enableShruti to:

1. Encode negated facts and rules and deal with inconsistent beliefs (with D.J. Grannes) (Shastri and
Grannes, 1996).

2. Seek coherent explanations for observations.

3. Encode soft/evidential rules and facts (with D.J. Grannes and C. Wendelken).

4. A novel representation of types, instances, and the subtype and supertype relations.

5. Deal with rules that require the dynamic instantiation of entities during backward reasoning (with D.J.
Grannes and J. Hobbs).

6. Represent rules with multiple antecedents as well as multiple consequents (with D.J. Grannes, J.
Hobbs, and C. Wendelken).

7. Encode attribute-values of entities and types (with D.J. Grannes).

8. Exhibit priming effects for entities, types, facts, and rules and competition between multiple entities
(with D.J. Grannes, B. Thompson, and C. Wendelken).

9. Support context-sensitive unification of entities (with B. Thompson, and C. Wendelken).

10. Tune network weights and rule-strengths via supervised learning (with D.J. Grannes, B. Thompson,
and C. Wendelken).

11. Realize control and coordination mechanisms required for encoding parameterized schemas and re-
active plans (Shastri, Grannes, Narayanan, and Feldman, 1999).

All of the above enhancements have been incorporated into theShruti simulator by D.J. Grannes, B.
Thompson, and C. Wendelken. In addition to the developments mentioned above, V. Ajjanagadde has
worked on the problem of abductive reasoning (Ajjanagadde, 1991, 1993) and also pursued an alternate set
of representational mechanisms (Ajjanagadde, 1997).

As an illustration ofShruti’s inferential ability consider the following narrative:

John fell in the hallway. Tom had cleaned it. He got hurt.

Upon being presented with the above narrative6 Shruti reflexively infers the following:

5A large number of computational models that use temporal synchrony to solve problems in perceptual processing have been
developed (e.g., Strong and Whitehead, 1989; Wang, Buhmann, and von der Malsburg, 1990; Horn and Usher, 1991; Grossberg and
Somers, 1992; Hummel and Biederman, 1992; Niebur, and Koch, 1994). In contrast, Bienenstock (1995) has proposed a general
model of computation in the neocortex based on the propagation of synchronous activity.

6Each sentence in the narrative is conveyed toShrutias a set ofdynamic bindings(see Section 2.6). Thus, the three sentences
in the narrative are conveyed as the dynamic bindings (i)(hfall-patient=Johni, hfall-location=Hallwayi), (ii) (hclean-agent=Tomi,
hclean-location=an-inanimate-entityi), and (iii) (h hurt-=a-male-humani). The sentences are presented in the order of their occur-
rence in the narrative. After each sentence is presented, the network is allowed to propagate activity for a fixed number of cycles.
Note thatShruti itself does not perform any syntactic processing — in its present form, it only models reflexive inference.
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1. Tom had mopped the floor.

2. The floor was wet.

3. John was walking in the hallway.

4. John slipped and fell because the floor was wet.

5. John got hurt because he fell.

Notice thatShruti draws inferences required to establish referential and causal coherence. It explains
John’s fall by making the plausible inference that John was walking in the hallway and he slipped because
the floor was wet. It also infers that John got hurt because of the fall. Moreover, it determines that “it” in
the second sentence refers to the hallway, and that “He” in the third sentence refers to John, and not to Tom.

Shrutidraws these inferences based on commonsense knowledge such as:

1. When one cleans a place, one may mop the floor of that place.

2. Mopping a floor makes the floor wet.

3. If one walks on a wet floor one might slip.

4. If one slips one may fall.

5. If one falls, one may get hurt

6. Relevant type information such as: John and Tom are human, John and Tom are male, hallway is a
place.

The above knowledge includes systematic rules that can be viewed as a system’scausal modelof the world.
An important feature of such knowledge is that it is instantiation-independent — it is not tied to specific
entities, rather, it applies to a range of entities of certain types. In formal terms, the expression of such
knowledge involvestypes, variables, andquantifiers. Moreover such knowledge is evidential in nature, and
typically, express likely possibilities rather than certainties. As we shall see,Shrutican encode such general
evidential rules as well as particular facts in its long-term memory (LTM), and reflexively activate them in
response to inputs to drawn inferences.

Shruti identifies a number of constraints on the representation and processing of relational knowledge
and predicts the capacity of the active (working) memory underlying reflexive reasoning (Shastri, 1992;
Shastri and Ajjanagadde, 1993). These constraints shed light on differences between reflexive and reflec-
tive processing. First, on the basis of neurophysiological data pertaining to the occurrence of synchronous
activity in the
 band,Shrutipredicts that a large number of facts (relational instances) can be active simul-
taneously and a large number of rules can fire in parallel during an episode of reflexive reasoning. However,
the number of distinct entities participating as role-fillers in these active facts and rules must remain very
small (see Section 5). Recent experimental findings as well as computational models lend support to this
prediction (e.g., Lisman and Idiart, 1995; Jensen and Lisman, 1996; Luck and Vogel, 1997). Second, since
the quality of synchronization degrades as activity propagates along a chain of cell clusters,Shruti pre-
dicts that as the depth of inference increases, binding information is gradually lost and systematic inference
reduces to a mere spreading of activation. ThusShrutipredicts that reflexive reasoning has a limited inferen-
tial horizon. Third,Shrutipredicts that only a small number of instances of any given relation can be active
simultaneously.
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The representational and inferential machinery ofShruti can be applied to other problems involving
relational structures, systematic and context-sensitive mappings between such structures, and rapid interac-
tions between persistent and dynamic structures. Some examples of such problems are parsing, the dynamic
linking of syntactic and semantic structures during language processing, and model-based visual object
recognition. In particular, Henderson (1994) has shown that constraints predicted byShrutiexplain several
properties of human syntactic processing including garden path effects and our limited ability to deal with
center-embedded sentences (The cat that the dog chased climbed up a tree). The work onShruti meshes
well with the NTL project (Bailey, Chang, Feldman, and Narayanan, 1998) on language acquisition and
provides neurally plausible solutions to several representational and computational requirements arising in
the project.

Shrutihas also been coupled with ametacognitivecomponent (Cohen, Freeman, and Wolf, 1996) capa-
ble of attention shifting, making and testing assumptions, identifying conflicts, and evaluating uncertainty.
Such a two-tier reflexive/metacognitive system has been used to model certain aspects of tactical decision
making under stress.

This paper describes some of the enhancements toShruti between circa 1993 and 1997. Section 2
discusses the basic elements ofShruti’s representational machinery. This include focal-clusters for the rep-
resentation of generic relations, entities, and types, expression of dynamic bindings via temporal synchrony,
the encoding of long-term facts, the representation of systematic mappings (or rules) between relational
structures, and the organization of concepts and instances into hierarchical structures. Section 3 illustrates
the functioning ofShruti with the help of a simple example of inference, and Section 4 discusses the en-
coding of more complex rules. The constraints on the reflexive processing of relational knowledge are
discussed in Section 5 and Section 6 illustrates how conflicting information is handled with the help of a
simple example. Section 7 provides pointers to work on the mapping ofShrutionto parallel hardware.

2 Representational machinery ofShruti

A description ofShruti requires the specification of itsstructureas well as a description of itsdynamicbe-
havior. All long-term (persistent) knowledge is encoded inShrutivia structured networks of nodes and links.
Such long-term knowledge includes generic relations, instances, types, general rules, and specific facts. The
dynamic aspects ofShruti involve the encoding of dynamic bindings and active facts via synchronous activ-
ity, the propagation of bindings by the propagation of synchronous activity along linked nodes, the activa-
tion of long-term facts in response to dynamic bindings, evidence combination via summation of activation,
competition via inhibition, the development of coherence via reverberant activity along closed loops, and
priming.

We begin our description ofShrutiwith an overview of its representational structure. Figure 1 illustrates
some of the key elements ofShruti’s representational machinery. These elements are discussed in detail
later, but a cursory examination of the network depicted in Figure 1 in conjunction with the following
description of the encoded knowledge should provide the reader with an overview ofShruti’s structure and
aid in understanding the details that follow.

The network fragment shown in Figure 1 depicts a partial encoding of the following rules, facts, in-
stances, and types:

1. 8(x:Agent y:Agent z:Thing) give(x,y,z)) own(y,z) [800,800];

2. 8(x:Agent y:Thing) buy(x,y)) own(x,y) [900,980];

3. EF:give(John, Mary, Book-17) [1000];

4. TF:8(x:Human y:Book) buy(x,y) [50];
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Figure 1: An overview of the representational machinery ofShruti. See text for details.
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5. is-a(John, Human);

6. is-a(Mary, Human);

7. is-a(Human, Agent);

8. is-a(Book-17, Book);

Item (1) is a rule which captures a systematic relationship between giving and owning. It states that when
an entityx of typeAgent, gives entityz of typeThing, to an entityy of typeAgent, then the latter comes to
own it. Similarly, item (2) is a rule which states that whenever any entity of the typeAgentbuys something,
it comes to own it. The pair of weights [a,b] associated with a rule have the following interpretation:a
indicates the degree of evidential support for the antecedent being the probable cause (or explanation) of the
consequent, andb indicates the degree of evidential support for the consequent being a probable effect of
the antecedent.7 Item (3) corresponds to a long-term “episodic” fact (or E-fact) which states that John gave
Mary a specific book (Book-17). Item (4) is a long-term “taxon” fact (or T-fact) which states that the prior
evidential support for a given (random) human buying a given (random) book is 50. Item (5) states that John
is a human. Similarly, items (6–8).

Given the above knowledge,Shrutican rapidly draw inferences of the following sort within a few hun-
dred milliseconds8 (numbers in[] indicate strength of inference):

1. own(Mary, Book-17) [784]; Mary, owns a particular book (referred to as Book17).

2. 9x:Book own(Mary,x) [784]; Mary owns a book.

3. 9(x:Agent y:Mary z:Book) give(x,y,z) [980]; Some agent gave Mary a book.

4. 9(x:Agent y:Thing) own(x,y) [784]; Some agent owns something.

5. buy(Mary,Book-1) [41]; Mary bought a particular book (referred to as Book-1).

6. is-a(John, Agent); John is an agent.

7. is-a(Mary, Agent); Mary is an agent.

We now examine some of the components ofShruti’s representational machinery in more detail.

2.1 Different node types and their computational behavior

Nodes are computational abstractions and correspond tosmall ensembles of cells. Moreover, a connection
from a node A to a node B corresponds to several connections from cells in the A ensemble to cells in the B
ensemble.

Shrutimakes use of four node types: m-�-nodes,� -and nodes,� -or nodes (type 1) and� -or nodes (type
2). This classification is based on thecomputationalproperties of nodes, and not on their functional or
representational role. As we shall see, nodes serving different representational functions will often be of the
same computational type. The computational behavior of the four node types are as follows:

7Weights inShruti lie in the interval [0,1000]. The mapping of probabilities and evidential supports to weights inShruti is
non-linear and loosely defined. The initial weights can be set approximately, and subsequently fine tuned to model a given domain
via supervised learning using a gradient-descent algorithm.

8The time required for drawing an inference is estimated byc � �, wherec is the number of cycles of rhythmic activity it takes
Shruti to draw an inference (see Section 3), and� is the period of rhythmicity. A plausible value of� is 25 milliseconds (see
Section 5). These times do not take into account the time that would be taken up by perceptual, linguistic, and motor processes to
process and respond to inputs.
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m-� nodes: An m-� node becomes active and fires upon receiving above-thresholdsynchronousinputs.
Here synchrony is defined relative to a window of temporal integration!. Thus all inputs arriving at a node
with a lead/lag of no more than! are deemed to be synchronous. In particular, an m-� nodeA receiving
an above-threshold periodic input from an m-� nodeB produces a periodic spike-train that isin-phasewith
B. Unlike the�-btu nodes introduced in (Shastri and Ajjanagadde, 1993) which fired in at most one phase
per cycle, an m-� node can fire in multiple phases within the same period. Thus an m-� nodeA receiving
above-threshold periodic inputs from m-� nodesB andC (whereB andC may be firing in different phases)
will respond by firing in phase with bothB andC. The generalization of�-btu nodes to m-� was suggested
by Strong (1993) in his commentary on (Shastri and Ajjanagadde, 1993) and has also been advocated by
(Park, Robertson, and Stenning, 1995). Recall that each node corresponds to a cluster of cells. Hence the
firing of nodeA in multiple phases means that some of the cells inA’s cluster are firing in phase withB
while some other cells in its cluster are firing in phase withC.

A scalar level (or strength of activity) is associated with the response of an m-� node.9 This strength of
activity is computed by theactivation combination function(ECF) associated with the node. Some ECFs
used in the past aresum, max, andsigmoid. For example, an m-� node withsum as its ECF computes the
weighted sum of inputs arriving in each phasei, and if this sum exceeds the threshold, the node produces a
response in phasei equal in strength to the weighted sum of inputs.
� -and nodes:A � -and node becomes active on receiving an uninterrupted and above-threshold input over
an interval� �max, where�max is a system parameter. Computationally, this sort of input can be idealized
as a pulse whose amplitude exceeds the threshold, and whose duration is greater than or equal to�max.
Physiologically, such an input may be identified with a high-frequency burst of spikes. Thus a� -and node
behaves like atemporal andnode and becomes active upon receiving adequate and uninterrupted inputs
over an interval�max. Upon becoming active, such a node produces an output pulse of width� �max. The
level of output activation is determined by the ECF associated with the node for combining the weighted
inputs arriving at the node. Some of the functions used in the past are:max, min, sigmoid, andaverage.
More flexible combination functions are under investigation (Shastri and Wendelken, 1998; Wendelken and
Shastri, in preparation).
� -or node (type 1): A � -or node (type 1) becomes active on receiving above-thresholdsynchronousinputs.
Upon becoming active such a node produces an output pulse of width�max. Thus a� -or node (type 1)
behaves like atemporal ornode.
� -or node (type 2): A � -or node (type 2) becomes active on receiving inputs in two or more distinct phases
during an interval�max. Upon becoming active, such a node produces an output pulse of width�max. Here
a phase refers to any temporal interval of width!.

The model also makes use ofinhibitory modifiersthat can block the flow of activation along a link — a
spike propagating along an inhibitory modifier will block a synchronous pulse propagating along a link that
the modifier impinges upon.

2.2 Focal-clusters and the Encoding of Relational Structures

Each generic relation (in general, a frame, a schema, or a predicate) is represented with the help of afocal-
clusterdepicted by a dotted ellipse. Such a focal-cluster for the relationgive is depicted in Figure 2. Note
that eachlabel within the focal-cluster (e.g.,+:give) denotes a node.

For the purpose of this example, it is assumed thatgivehas three roles:giver, recipientandgive-object.
Each of these roles is encoded by a separate node labeledgiver, recip andg-obj, respectively. The focal-
cluster ofgive also includes anenablernode labeled?:give and twocollector nodes labeled+:give and
–:give. In general, the focal-cluster for ann-placegeneric relation containsn role nodes, one enabler (?)

9The response-level of a m-� node in a phase can be governed by the number of cells in the node’s cluster firing in that phase.
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?:give giver recip g-obj+:give -:give
w-

w+

Figure 2: An idealized depiction of the focal-cluster for the generic relationgive. Each label corresponds
to a node and consists of a small but physically dispersed ensemble of cells. In the illustration, the relation
give is assumed to have three roles:giver, recipientandgive-object. Each of these roles is encoded by a
distinct node labeledgiver, recip andg-obj, respectively. The focal-cluster also includes anenablernode
?:give, and twocollectornodes+:give and–:give. See text for details.

node, one positive collector (+) node, and one negative collector (–) node.
As explained below, theenablernode “enables” the search for an explanation for the currently active

instance of the generic relation, and the+ and– collectornodes serve to “collect” evidence for and against,
the currently active instance of the generic relation. Hence, the choice of terminology. The computational
type of collector and enabler nodes is� -and, and the computational type of role nodes is m-�.

The focal-cluster associated with a generic relation acts as an anchor for the complete encoding of a
generic relation. All information pertaining to a relation converges on its focal-cluster, and all such infor-
mation can be accessed by fanning out from this focal-cluster.

2.2.1 Semantic import of enabler and collector nodes

The enabler and collector nodes have the following significance: Assume that the roles of a generic relation
givehave beendynamically boundto some fillers, and thereby represent an active instance ofP (as we will
see, shortly, a dynamic binding between a role and an entity is expressed via the synchronous activity of role
and entity nodes). The activation of the enabler?:P means that the system is seeking an explanation for (or
trying to find support for) the currently active instance ofP. The request for such an explanation might be
generated internally by the reasoning system, or be communicated to it by some other subsystem (e.g., the
planning module). In contrast, the activation of+:P means that the system is affirming the currently active
instance ofP. Such an affirmation could be the result of retrieval, inference, or some perceptual or linguistic
process. Similarly, the activation of–:P means that the system is affirming the negation of the currently
active instance ofP.

The level of activation of?:P signifies the strength with which information aboutP is being sought.
Similarly, the level of activation of+:P (–:P) signifies the degree of belief in the truth (falsity) of the
currently active instance ofP.
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For example, if the rolesgiver, recipientandobjectare dynamically bound to John, Mary, and a-book,
respectively, then the activation of?:givemeans that the system is asking whether the fact “John gave Mary
a book” matches one of the events in the system’s memory, or whether it can be inferred from what is
known to the system. In contrast, the activation of+:P with the same role bindings means that the system
is asserting the event “John gave Mary a book”. If–:P is active instead of+:P it means that the system is
asserting the negation of the event “John did give Mary a book” (i.e., it is asserting “It is not true that John
gave Mary a book”).

A related scheme for dealing with positive and negative propositions (i.e., unary relations) was described
in (Cottrell, 1989), and an extension of this scheme to n-ary relations was suggested in (Cottrell, 1993). The
suggested scheme required two focal-clusters for each relationP — one for positive knowledge aboutP
(+:P), and another for negative knowledge aboutP (–:P). It also required a mechanism for comparing
bindings across the focal-clusters+:P and–:P and ensuring that the same set of bindings were expressed
in both the clusters.Shruti’s use of+ and– collectors within a single focal-cluster, however, simplifies the
representation of negative relational instances and makes it easy to detect contradictions.

2.2.2 Degrees of Belief: support, no information, and contradiction

The levels of activation of the+ and – collectors of a generic relation measure the effective degree of
support offered by active knowledge structures to the currently active instances of the relation. These levels
of activation are the result of the activation incident on the collectors from the rest of the network and the
mutual inhibition between the two collectors. The two activation levels encode a graded belief ranging
continuously from “no” at one extreme (where only the– collector is active), to “yes” at the other extreme
(where only the+ collector is active), with “don’t know” in between (where neither collector is very active).
If both the collectors receive comparable and strong activation then both collectors can be in a high state of
activity, in spite of the mutual inhibition between them. When this happens, a contradiction is detected. In
the current implementation this is done by an additional node within each predicate cluster (not shown in
Figure 2) that receives excitatory inputs from both the collectors.

2.2.3 Significance of collector to enabler connections

The links from the collectors to the enabler of a generic relation (see Figure 2) convert a dynamic assertion
of a relational instance into a query about the assertion. This means that the system is always seeking
support (or an explanation) for active assertions. It is as though the system constantly “evaluates” incoming
knowledge in the context of existing knowledge and seeks to affirm or reject it based on what it knows.

The weightsw+ andw� on links from the+ and the– collectors to enablers, respectively, consist
of two components. One of the components is a measure of the system’s overall propensity for seeking
explanations. A system with a high value for this component can be viewed as being highly skeptical, while
one with a low value can be viewed as being highly credulous. The other component is relation specific and
is inversely related to the probability of occurrence associated with the positive and negative instance of this
relation. Thus the more likely a fact, the more intense the search for its explanation. In view of this,w+ and
w� may be expressed as follows:

w+ =
� � system’s propensity for seeking explanations

� � probability of occurrence of +P

w� =
� � system’s propensity for seeking explanations

� � probability of occurrence of –P

where� and� are scalar values.
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The ability of a system to evaluate incoming information also gives it the ability to detect inconsistencies
between incoming information and prior knowledge. The scope of inconsistency detection is however,local.
In other words, inconsistencies are detected only between two facts that are within a limited inferential
distance from each other. This bound on inferential distance is governed by the constraint on the depth of
inference discussed in Section 5. Observe that we are referring to a reflexive process of evaluation and not
a deliberate search for contradictions. Thus while this process of detecting inconsistencies would be very
fast and automatic, it would be subject to the constraints on reflexive reasoning which include bounds on the
depth of inference.

2.2.4 Collector to enabler connections lead to reverberant activity

The links from the collectors of a generic relation to its enabler also create positive feedback loops of
activation and thereby create stable coalitions of active cells under appropriate circumstances. Assume that
the system is seeking an explanation about the currently active instance ofP, and therefore,?:P is active. If
the cognitive apparatus finds supports for this instance ofP it will activate +:P . This will create a feedback
loop — or a stable coalition — consisting of?:P, other ensembles participating in the explanation,+:P and
finally ?:P. Similarly, if the cognitive apparatus finds supports for the negation of this instance ofP it will
activate–:P. This will also create a feedback loop consisting of?:P, other ensembles participating in the
explanation,–:P and finally?:P.

Within theShruti framework, such reverberant activity is the network correlate of successful “retrieval”
and “understanding.” Moreover, such activity also leads to priming (see Section 2.5), and possibly, to the
formation of episodic memories (see Shastri, 1997b, 1998).

2.3 Focal-clusters for Encoding Types and Instances

The encoding of types and instances, and the instance-of, superordinate, and subordinate relations is depicted
in Figure 3 and described in brief below. A more detailed treatment appears in (Shastri, 1999b). The focal-
cluster of an entityI consists of two nodes,?:I and+:I . In contrast, the focal-cluster of a typeT consists of
a pair of “?” nodes (?e:Tand?v:T) and a pair of “+” nodes (+e:T and+v:T). All these nodes are of type
m-�.

While the nodes+v:T and?v:T participate in the expression of knowledge (facts and attributes) involv-
ing the whole typeT, the nodes+e:T and?e:Tparticipate in the encoding of knowledge involving particular
instances of typeT. Thus the pair ofv nodes and the pair ofe nodes signify universal and existential quan-
tification, respectively.

The levelsof activation of?:I, ?v:T, and?e:Tnodes signify the strength with which information about
entity I, typeT, and an instance of typeT, respectively, is being sought. Similarly, thelevelsof activation
of +:I , +v:T, and+e:T signify the degree of belief that the entityI, the typeT, and an instance of typeT,
respectively, play appropriate roles in the situation currently encoded by the system’s state of activity.

As explained in Section 2.7, the closure between the “?” and “+” nodes is provided by facts.
Interconnections between nodeswithin the focal-cluster of an instance and a type lead to the following

desirable functionality (in the following,I refers to an instance,T refers to a type): (i) The link from+:I
to ?:I causes an assertion about an instance to lead to a search for a possible explanation of the assertion.
Similarly, the link from+v:T to ?v:T causes an assertion about the whole typeT to lead to a search for a
possible explanation of the assertion. (ii) The link from+v:T to +e:T causes an assertion about the type
to lead to the same assertion about an unspecified member of the type (e.g., “Humans are mortal” leads to
“there exists a mortal human”).10 (iii) The link from +e:T to ?e:T causes an assertion about an instance
of the type to lead to a search for a possible instance that would verify the assertion (e.g., the assertion “A

10Shruti infers the existence of a mortal human given that all humans are mortal, though this is not entailed in classical logic.
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Figure 3: The encoding of types and (specific) instances.I is an instance of typeT1 andT1 is a subtype
of type T2. For example,I, T1 andT2 may be John, Human, and Agent, respectively. Each instance is
expressed using a collector (+) and an enabler (?) node. Each type is expressed using a pair of collector
nodes and a pair of enabler nodes. The nodes labeled “+v” and “?v” participate in the encoding of facts
(and attributes) involving the whole type. The nodes labeled “+e” and “?e” participate in the encoding of
facts and attributes involving an unspecified instance of the type. Here “v” and “e” may be interpreted as
universal and existential quantifiers, respectively.
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human is mortal” to the query “Is there is a human who is mortal?”) (iv) The link from?e:T to ?v:T causes
a query (i.e., a search for an explanation) about a member of the type to lead to a query about the whole type
(one way of determining whether “A human is mortal” is to find out whether “Humans are mortal”). (iv)
Pathways formed by the above links lead to other behaviors. For example, given the path from+v:T to ?e:T,
any assertion about the whole type leads to a query or search for an explanation of the assertion applied to a
given subtype/member of the type (e.g., “Humans are mortal” leads to the query “Is there a human who is
mortal?”).

2.3.1 Interconnection among focal-clusters of instances and types

Interconnections between nodes of the focal-cluster of an instance and that of a type lead to the following
functionality:

� Because of the link from+v:T1 to +:I , any assertion about the typeT1 leads to the same assertion
about the instanceI (“Humans are mortal” leads to “John is mortal”).

� Because of the link from+:I to +e:T1, any assertion aboutI leads to the same assertion about a
member ofT1 (“John is mortal” leads to “A human is mortal”).

� Because of the link from?:I to ?v:T1, a query aboutI leads to a query about the whole typeT1 (one
way of determining whether “John is mortal” is to determine whether “Humans are mortal”).

� Because of the link from?e:T1 to ?:I, a query about a member ofT1 leads to a query aboutI (one
way of determining whether “A human is mortal” is to determine whether “John is mortal”).

2.3.2 Interconnection between focal-clusters of types

Interconnections between the focal-clusters of sub- and supertypes lead to the following functionality.

� Because of the link from+v:T2 to +v:T1, any assertion about the supertypeT2 leads to the same
assertion about the subtypeT1 (“Agents can cause change” leads to “Humans can cause change”).

� Because of the link from+e:T1 to +e:T2, any assertion about a member ofT1 leads to the same
assertion about a member ofT2 (“a mortal human exists” leads to “a mortal agent exists”).

� Because of the link from?v:T1 to ?v:T2, a query about the whole typeT1 leads to a query about
the whole typeT2 (one way of determining whether “Humans are mortal” is to determine whether
“Agents are mortal”).

� Because of the link from?e:T2 to ?e:T1, a query about a member ofT2 leads to a query about a
member ofT1 (one way of determining whether “an agent is mortal” is to determine whether “a
human is mortal”).

Thus the interaction between the links within the encoding of a type and instance and the links between
the encodings of different types and instances leads to a desirable set of type inferences.

2.4 Mutual exclusion and collapsing of phases in the type hierarchy

Instances in the type hierarchy can be part of one or more “phase-level mutual exclusion clusters” (�-mex
clusters). Members of a�-mex cluster inhibit one another from firing in close temporal proximity of one
another, and hence, only the member with the highest activation fires in a sustained manner in a given phase.
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In other words, a�-mex cluster behaves like a phase-sensitive winner-take-all cluster. A similar�-mex can
be formed by mutually exclusive types.

If the + node of an entityI is firing in multiple phasesi andj, and if the+ node of no other entity besides
I is firing in phasej, thenShruti can collapse phasesi andj. This corresponds to the synchronization of
cells in the cluster+:I .

2.5 Priming

The type hierarchy also supports associative priming of links between enabler nodes. Such priming facili-
tates the reactivation of a type (or entity) as an answer to a query, if the type (or entity) had recently been
activated as an answer to another query. With reference to Figure 3:

� The weight of the link from?e:T2 node to?e:T1 node will be primed (increased) if node?e:T1
receives concurrent activity from the+e:T1 node while it is receiving activity along the link from
node?e:T2.

� The weight of the link from?v:T1node to?v:T2node will be primed if node?v:T2receives concurrent
activity from the+v:T2 node while it is receiving activity along the link from node?v:T1.

� The weight of the link from?e:T1node to?:I node would be increased (primed) if node?:I receives
concurrent activity from the+:I node while it is receiving activity along the link from node?e:T1.

� The weight of the link from?:I node to?v:T1node will be primed if node?v:T1receives concurrent
activity from the+v:T1 node while it is receiving activity along the link from node?:I.

The priming can affect the response time as well as the answer found by the network. Since a primed
entity becomes active sooner than an unprimed entity, a query whose answer involves primed entities is
answered faster than a query whose response involves only unprimed entities (all else being equal). Fur-
thermore, all else being equal, a primed entity would dominate an unprimed entity in a winner-take-all
competition, and hence, in any situation wherein a primed and an unprimed entity compete to be a filler of
a role the primed entity wins and emerges as the filler of the role.

Analogous priming of links also occurs for links connecting the enabler nodes of the consequents of
a rule to the enabler nodes of the antecedents of the rule (via the mediator). This sort of priming is also
selective in nature and occurs only if the enabler node at the destination of such a link receives concurrent
activation from its+ or – collector. Note that this sort of priming raises the link weights along the complete
set of rules and facts involved in an explanation and makes it possible to rapidly recreate an explanation that
has recently been computed by the network.

2.6 Encoding of dynamic bindings

The dynamic(or active) encoding of a relational instance corresponds to arhythmic pattern of activity
wherein bindings between roles and entities are represented by thesynchronousfiring of appropriate role and
entity nodes. With reference to Figure 2, the rhythmic pattern of activity shown in Figure 4 is the dynamic
representation of the relational instance(give: h giver=Johni, h recipient=Mary i, h give-object=a-Book
i) (i.e., the event, “John gave Mary a book”). Observe that the collector ensembles+:John, +:Mary and
+:a-Book are firing in distinct phases. But+:John and the rolegiver are firing in synchrony,+:Mary and
the rolerecip are firing in synchrony, and+:a-Bookand the roleg-obj are firing in synchrony. Since+:give
is also firing, the system is essentially making an assertion. Note that as a result of the connections between
the collector and enabler ensembles, the enabler ensembles?:give, ?:John, ?:Mary, and?:a-Bookalso start
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?:give

?:John

?:Mary

?:a-Book

+:give

g-obj

recip
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+:John

+:Mary

+:a-Book

Figure 4: The rhythmic pattern of activation representing the dynamic bindingsgive(John,Mary,a-Book).
Bindings are expressed by the synchronous activation of bound role and entity nodes. Each spike in the
illustration signifies the synchronous firing of cells in the ensemble of the appropriate node.
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Figure 5: (a) The encoding of E-facts:love(John,Mary)and:love(Tom,Susan). The pentagon shaped node
serves as a “fact node” and is of type� -and. The filled blobs impinging on links denote inhibitory modifiers.
The firing of a role node without thesynchronousfiring of the associated filler node blocks the activation
arriving at the fact node. In other words, if the role is bound in the dynamic instance, it must be bound to
the same entity to which it is bound in the E-fact. Otherwise the E-fact will be blocked. (b) Links from the
fact node back to collectors of role-fillers are shown for the factlove(John,Mary)to avoid clutter. Similar
linkage exists between F2,lover andloveeand+:Tom and+:Susan. The circular nodes are m-� nodes with
a high threshold which is satisfied only when both the role node and the fact node are firing. Consequently,
a binder node fires in phase with the associated role node, if the fact node is firing. Weights such as�1 and
�2 indicate the strength of belief in the respective facts.

firing (this is depicted in Figure 4). Activation also spreads in the type hierarchy, and we will discuss this in
more detail in Section 6.

The dynamic representation of the query “Did John give Mary a book” would be similar except that
only the role nodesgiver, recipient, andgive-object, the enabler nodes?:give, ?:John, ?:Mary, and?:a-
Bookwould be active; the collector nodes would remain inactive.

The rhythmic activity underlying the dynamic representation of relational instances is expected to be
highly variable and dynamic, but it is assumed that over short durations — ranging from a few hundred
milliseconds to about a second — such activity may be viewed as being composed ofk interleaved quasi-
periodic activities wherek equals the number of distinct entities that fill roles in the relational instance
being processed. The period of this transient activity,�, is at leastk � !int where!int is thewindow of
synchrony, i.e., the amount by which two spikes can lead/lag and still be treated as being synchronous by
appropriate neural circuits. As speculated in (Shastri and Ajjanagadde, 1993), the activity of role and entity
cells engaged in dynamic bindings might correspond to
 band activity.
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2.7 Encoding of facts and distributions in LTM: E-facts and T-facts

CurrentlyShrutiencodes two types of relational “instances” (i.e., facts) in its LTM. These areepisodicfacts
(E-Facts) andtaxonfacts (T-facts). In general, a large number of E-facts and T-facts can be associated with
any relation.

E-facts correspond to “facts” in the usual sense of the word. They are specific instances of a generic
relation (e.g., “John gave Mary a book on Tuesday”). In contrast, a T-fact corresponds to a distillation or
statistical summary of various instances of the generic relation observed by the agent and can be viewed as
coding theprior support11 for a situation, conditioned by the type ofrole-fillers involved in the situation.
Thus the T-fact8(x:Human, y:Book) own(x,y) [50]states that the prior support for the event “a human
bought a book” is 50 and the T-fact8(x:Californian, y:Car) buy(x,y) [950]states that the prior support for
the event “a Californian bought a car” is 950. Taken together, the T-facts associated with a relation convey
distributional information about the instances of a relation conditioned by the types of role-fillers.

In a sense, while E-facts are analogous to episodic memories (Tulving, 1983), T-facts are analogous to
associative memories and subsume certain kinds of semantic memory. The choice of terminology is moti-
vated by the episodic memory versus taxon memory distinction suggested by O’Keefe and Nadel (1978).12

In general, E-facts and T-facts can have the form:
9x1:X1; : : : ; xr:Xr 8y1:Y1; : : : ; ys:Ys (+=�)P (: : :) [�]

where arguments ofP are either entities or variablesxi andyi. Universally quantified variables are assumed
to be distinct. The bindings specified in a fact can be specific entities or entities constrained to be of a certain
type.

Note that in addition to encoding fully instantiated relational instances such as “John gave Mary a book
in the library on Tuesday”, an E-fact can also encode partially instantiated and quantified assertions such as
“John gave someone a book”, “All permanent employees receive a bonus” and “there is an employee who is
the manager of all employees”. Moreover, E-facts can also be associated with a strength� which measures
the agent’s belief in the fact.

Though E-facts and T-facts share the same surface form, they have different semantic imports, and this is
reflected in their responses to ongoing activity. An E-factE1 associated with a generic relationP becomes
active whenever all the dynamic bindings specified in an active instance ofP match those encoded inE1.
Thus an E-fact is sensitive to mismatches between the bindings it encodes and active dynamic bindings. In
contrast, a T-fact associated withP is only sensitive to similarities between its bindings and those specified
by active instance ofP . Thus a T-fact associated withP ignores binding errors and produces a response that
is proportional to the number of matches between its bindings and those of an active instance ofP .

The distinction between E-facts and T-facts is motivated in part by the distinct circuitry required to
memorize such facts. In particular, while T-facts can be modeled easily as an associative memory that is
responsive to similarity, E-facts require specialized circuitry to enable them to detect binding-matches as
well as binding-errors.

2.7.1 Encoding E-facts: Memory as a temporal pattern matcher

An E-fact should rapidly detect matches and mismatches between the bindings encoded by it and the dy-
namic bindings expressed in the system’s state of activity. Given that dynamic bindings are represented by
synchronous activity, it follows that the encoding of an E-fact should include coincidence-match circuits (for
detecting binding matches) and coincidence-failure detector circuits (for detecting binding mismatches).

11The prior support may be viewed as being monotonically related to prior probability.
12The classification of memory is an ongoing areas of research and conventional classifications such as declarative/procedural,

episodic/semantic, have proved problematic. As explained later, the distinction between E-facts and T-facts being made here is
guided by computational considerations. Whereas, E-facts are sensitive to binding matches as well as binding-errors, T-facts are
sensitive only to binding matches.
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Figure 5 illustrates the encoding of E-factslove(John,Mary)and:love(Tom,Susan)used in theShruti
model.13 Each E-fact is encoded using a distinct fact node of type� -and (drawn as a pentagon). The� -and
node encoding a fact receives a link from theenablernode of the associated generic relation and sends a link
to the+ or – collector of the generic relation depending on whether the fact encodes a positive or a negative
assertion. The link from the enabler to the fact node is modified by inhibitory links from role nodes of the
associated generic relation. If a role is bound to an entity, the modifier input from this role node is in turn
modified by an inhibitory link from the? node of the appropriate entity. The weight on the links from a
“fact” node to the collector node encodes the strength of the fact.

In addition to connections that link a role node and the? node of the role-filler to the fact node, there
also exist connections from the fact node and a role node to the+ node of the role-filler. These connections
are mediated bybindernodes. For every binding specified in an E-fact, there is a binder node of type m-�
which receives one link from the fact node and another from the role node, and sends a link to the+ node of
the role-filler. The threshold of a binder node is satisfied when it receives inputs fromboththe role node and
the fact node. Consequently, whenever both the fact and role nodes are active, a binder node fires in phase
with the associated role node and propagates activity to the+ node of the entity filling the role.

Given the querylove(John,Mary)? the E-fact node F1 will become active and activate+:love, +:John
and+:Mary nodes indicating a “yes” answer to the question. Similarly, given the querylove(Tom,Susan)?,
the E-fact node F2 will become active and activate–:love, +:Tom and +:Susannodes indicating a “no”
answer to the query. Finally, given the querylove(John,Susan)?, neither+:love nor –:love would become
active, indicating that the system can neither affirm nor deny whether John loves Susan (the nodes+:John
and+:Susanwill also not receive any activation).

Types can also serve as role-fillers in E-facts (e.g., Dog in “Dogs chase cats”) as so can unspecified
instances of a type (e.g., a dog in “a dog bit John”). Such E-facts are encoded by using the appropriate
nodes in the focal-cluster for “Dog”. In general, if an existing instance,I, is a role-filler in a fact, then?:I
provides the input to the fact cluster and+:I receives inputs from the binder node in the fact cluster. If the
whole typeT is a role-filler in a fact, then?v:Tprovides the input to the fact cluster and+v:T receives inputs
from the binder node in the fact cluster. If an unspecified instance of typeT is a role-filler in a long-term
fact, then a new instance of typeT is created and its “?” and “+” nodes are used to encode the fact.

2.7.2 Encoding T-facts

The encoding of the T-fact8 (x:Human, y:Book) buy(x,y) [50]is depicted in Figure 6. The circular nodes
are m-� nodes with a high threshold, and hence, they fire upon receiving synchronous activity from both
their inputs. The output produced by the triangular node is proportional to the ratio of active input links to
the total number of input links. The link from the enabler node ofbuyserves to enable the functioning of the
triangular node. The weight on the link from the triangular node to the MAX node denotes the strength of
the T-fact. For each generic relation such asbuythere is a MAX node corresponding to positive T-facts about
the relation, and another MAX node corresponding to all the negative T-facts about the relation. Observe
that the encoding responds to binding matches and does not attempt to detect any binding errors. As in the
case of E-facts, there also existbindernodes that connect a T-fact node and a role node to the+ node of the
entity filling the role in the T-fact.

Typically, the role-fillers of T-facts are types. If typeT is a role-filler in a T-fact, then?v:T provides the
input to the fact cluster and+v:T receives inputs from the binder node in the fact cluster. In general, if an
existing instance,I, is a role-filler, then?:I provides the input to the fact cluster and+:I receives inputs from

13The encoding described here solves the representational problem of encoding E-facts, but is not amenable to learning. An
alternate coding that satisfies the representational requirements and at the same time is also amenable to rapid learning is described
in (Shastri, 1999a).
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Figure 6: The encoding of T-fact:8(x:Human, y:Book) buy(x,y) [50]. The circular nodes have a high
threshold and fire upon receiving coincident activity along both their incoming links. The triangular node is
a� -or node that produces an output in proportion to the ratio of active links to the total number of incoming
links. The weight 50 on the link from the triangular node to the MAX nodes encodes the strength of the
T-fact. Negative T-facts are encoded in the same manner, except the output of the MAX node corresponding
to negative T-facts impinges on the– collector instead of the+ collector. As in the case of E-facts, binder
nodes link the T-fact node and a role node to the+ node of the entity filling the role in the T-fact.



Lokendra Shastri Advances inShruti 20

the binder node in the fact cluster. If an unspecified instance of typeT is a role-filler in a long-term fact,
then a new instance of typeT is created and its “?” and “+” nodes are used to encode the fact.

2.8 Encoding of rules:

Figures 7 and 8 illustrate the encoding of the following rule in greater detail:
8 x:Agent y:Agent z:Thing give(x,y,z)) own(y,z)[w1,w2]

which says that whenever any entity of typeAgentgives something to another entity (also of typeAgent),
then the latter comes to own the thing that was given. The pair of weights [w1, w2] has the following inter-
pretation:w1 indicates the degree of evidential support forgivebeing the probable cause (or explanation)
of own, andw2 indicates the degree of evidential support forown being a probable effect ofgive. These
strengths are defined on a non-linear scale ranging from 0 to 1000. As pointed out earlier, the mapping of
probabilities and evidential supports to weights inShruti is non-linear. In general, the weights can be set
approximately, and subsequently, fine tuned using gradient-descent based supervised learning algorithms to
model a given domain.

A rule is encoded via a focal-cluster that mediates the flow of activity and bindings between the an-
tecedent and the consequent of the rule. We refer to this cluster as themediatorof the rule.14 The mediator
consists of a collector node (+) and an enabler node (?) and as manyrole-instantiationnodes as there are
distinct variables in the antecedent. Every role in the antecedent maps to exactly one role-instantiation node
in the mediator, with co-referenced roles mapping to the same role-instantiation node. Role-instantiation
nodes are abstractions of small neural circuits and are depicted as square nodes (see Figure 7).

The encoding of a rule establishes links between nodes in the antecedent, consequent, and mediator
clusters as follows:

� The roles of the consequent relations are linked to the roles of the antecedent relations via appropriate
role-instantiation nodes in the mediator. This linking reflects the correspondence between antecedent
and consequent roles specified by the rule.

� Theenablersof the consequent relations are connected to theenablersof the antecedent relations via
the enabler of the mediator.

� The appropriate (+ /–) collectors of the antecedent relations are linked to the appropriate (+ /–) collec-
tors of the consequent relations via the collector of the mediator. A collector to collector link originates
at the+ (–) collector of an antecedent relation if the relation appears in its positive (negated) form in
the antecedent. The link terminates at the+ (–) collector of the consequent relation if the predicate
appears in a positive (negated) form in the consequent.

� The weights on the links capture theevidentialnature of the rule. Thus the two weights in Figure 7
can be interpreted informally as follows:

w1: 8 x:Agent y:Agent z:Thing Support(give(x,y,z)j own(y,z)).

w2: 8 x:Agent y:Agent z:Thing Support(own(y,z)j give(x,y,z)).

It is possible to interpret the evidential weights in a number of ways. This includes probabilistic
as well fuzzy interpretations. A detailed discussion of various possibilities, and their relevance to
modeling different sorts of knowledge, is beyond the scope of this paper (see Shastri and Wendelken,
1998; Wendelken and Shastri, in preparation).

14The design of the mediator was motivated, in part, by discussions the author had with Jerry Hobbs.
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+:own -:own ?:own owner o-obj

+:med1 ?:med1 r3r2r1
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Figure 7: A simplified version of the encoding of the rule:8 x:Agent y:Agent z:Thing give(x,y,z)) own(y,z)
[w1,w2]. Enabler to enabler, collector to collector, and role to role connections between the antecedent and
consequent predicates are mediated by a mediator cluster that reflects the structure of the antecedent. The
square nodes are abstractions of a neural circuit. See text for details.
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Figure 8: A more detailed encoding of the rule:8 x:Agent y:Agent z:Thing give(x,y,z)) own(y,z). Ad-
ditional circuitry required for enforcing type restrictions is shown along with the connections between the
focal-clusters of the antecedent and consequent predicates. The triangular nodes are type 1� -or nodes. One
such node enforces the restriction that the role fillers ofo-objmust be of the typeThing in order for this rule
to fire in the backward direction. The� -or node blocks the firing of the rule if theb-obj is bound to a type
other thanThing. The circuitry for enforcing restriction that the role-filler ofownerbe of the typeAgentis
analogous. The square nodes are abstractions of a neural circuit. See text for details about the functioning
of these nodes.
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� Type restrictions on role-fillers are encoded using type 1� -or nodes (see Figure 8). The restriction
that the role-filler ofo-obj must be of the typeThing is encoded by linking the output of theo-obj
node to a type 1� -or node which will fire whenevero-obj fires, and block the link from ?:give to the
mediator enabler, unless theo-objnode fires in synchrony with?e:Thing. Recall that the synchronous
firing of o-obj with ?e:Thingsignifies thato-obj role is bound to an instance of typeThing. Thus
during a search for an explanation, this rule fires only if the roleo-obj is either unbound, or bound to
an entity of typeThing. The circuit for enforcing the restriction that the role-filler ofownerbe of the
typeAgentis analogous.

� Circuitry for enforcing other special conditions in rules (e.g., repeated variables in the consequent) is
described in (Shastri and Ajjanagadde, 1993).

The role-instantiation node is an abstraction of a neural circuit with the following functionality. A role-
instantiation node receives one link from the mediator enabler node and zero or more links from consequent
role nodes. If a role-instantiation node receives activation from the mediator enablerand one or more
consequent role nodes, it simply propagates the activity onward to the connected antecedent role nodes.
If on the other hand, the role-instantiation node receives activityonly from the mediator enabler, it sends
activity to the?enode of the type specified in the rule as the type restriction for this role. This causes the
?enode of this type to become active in an unoccupied phase.15 The?enode of the type conveys activity
in this phase to the role-instantiation node which in turn propagates this activity to connected antecedent
role nodes. This interaction between the mediator and the type representation essentially leads to activity
that corresponds to the following: “Is there any entity of the specified type that could be a role-filler for the
given role?” With reference to Figure 8, considerr1, the role-instantiation node corresponding to the role
giver. This node is not connected to any role ofown, and hence, whenever this rule fires,r1 will receive
activation only from the mediatorenabler. Consequently, it will send activation to the?e:Agentnode in the
type hierarchy. This will lead to the activation of?e:Agentnode in an unoccupied phase. The?e: Agent
node will now activater1 in this phase, andr1 will in turn propagate this activity to the rolegiver of give.

With reference to Figure 1, note that each rule is associated with its own mediator structure. Furthermore,
the rule weights indicate that buying is more likely to explain ownership than giving (900 versus 800) and
that you are more likely to own an object if you buy it, than if you were given it (980 versus 800).

3 An example of inference

Figure 9 depicts a schematic response of selected nodes in Figure 1 to the query “Does Mary own a book?”
(9x:Book own(Mary,x)?).16

This query is posed by activating?:Mary and ?e:Booknodes, the role nodesowner and o-obj, and
the enabler?:own, as shown in Figure 9. Observe that?:Mary andownerare firing in synchrony and so
are ?e:Bookand o-obj. We will refer to the phases of activation of?:Mary and ?e:Bookas �1 and�2,
respectively.

Activation from the focal-cluster forown reaches the mediator structure of rules (1) and (2). Con-
sequently, nodesr2 and r3 in the mediator for rule (1) become active in phases�1 and�2, respectively.
Similarly, nodess1ands2in the mediator of rule (2) become active in phases�1 and�2, respectively. At the
same time, the activation from ?:own activates the enablers?:med1and?:med2in the mediators of rules (1)

15In the current implementation ofShruti this is done artificially (in software). In a detailed and neurally plausible implementa-
tion, this will be the result of inhibitory interactions between instance nodes in the type hierarchy. A similar form of node activation
in an unoccupied phase is suggested by Ajjanagadde (1990) for realizing function terms.

16In general, the form of queries inShruti is similar to that of facts except that whereas repeated universally quantified variables
can occur in queries, existentially quantified variables are assumed to be distinct.
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Figure 9: Schematic response of selected nodes in Figure 1 to the query9x:Book own(Mary,x)?(Does Mary
own a book?) The trace does not show the strength (or level) of activity of nodes. See text for details.
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and (2). Sincer1 does not receive any activation from any role in its consequent’s focal-cluster (i.e., from
own), it activates the node?e:Agentin the type hierarchy which becomes active in a free phase (say�3).

The activation from nodesr1, r2 andr3 reach the rolesgiver, recip andg-obj in thegive focal-cluster,
respectively. Similarly, activation from nodess1 ands2 reach the rolesbuyerandb-obj in the buy focal-
cluster, respectively. Thus after a few cycles, rolesrecip andbuyerbecome active in�1, rolesg-obj and
b-obj become active in�2, and rolegivebecomes active in a new phase�3 along with the node?e:Agentin
the type structure.

In essence, the system has created new bindings forgiveandbuywhereingiver is bound to an undeter-
mined entity of typeAgent, recipient is bound toMary, g-obj is bound toa book, buyer is bound toMary
andb-obj is bound toa book. These bindings together with the activation of the enabler nodes?:give and
?:ownencode two new queries: “Didsome agentgive Mary a book?”, and “Did Mary buy a book?”.

Concurrently, activation travels in the type hierarchy from?e:Agentto ?e:Person, etc., and thereafter to
?:John, ?:Mary, etc. As a result of this propagation, the queries about “giving” and “buying” gets mapped
to a family of queries with different role-fillers (e.g., “Did a human give Mary a book?”, “Did John give
Mary a book?”, “Did John give Mary Book-17?”, “Did Mary buy all books” etc.

The� -and node associated with the E-factgive(John, Mary, Book-17)now becomes active as a result of
matching the querygive(John, Mary, Book-17)?and causes+:give to become active. This in turn causes the
mediator collector,+:med1, to become active and transmit activity to+:own (the level of activity attained
by +:give and+:own is 980 and 784, respectively).

The activation of+:own, along with the firing ofownerando-objnodes in synchrony with various entity
nodes means that the network state is asserting, among other things, “Mary owns a book”. This corresponds
to an affirmative answer to the query. Moreover, the activation+own creates a reverberant loop of activity
involving the clustersown, med1, give, the fact node F1, and the entitiesJohn, Mary, andBook-17. This
state of reverberant activity signifies that the network has found a coherent explanation (or answer) to the
query “Does Mary own a book”, namely, John gave Mary Book-17, so Mary owns a book.

Observe that reasoning is the spontaneous and natural outcome of the network’s behavior. The network
does not apply syntactic rules of inference such asmodus-ponens. There is no separate interpreter that ma-
nipulates and rewrites symbols. The network encoding is best viewed as a vivid internalmodelof the agent’s
environment, where the interconnections between (internal) representations directly encode the dependen-
cies between the associated (external) entities. When the nodes in this model are activated to reflect a given
state of affairs in the environment, the model spontaneously simulates the behavior of the external world and
in doing so makes predictions and draws inferences.

3.1 Parallelism and the significance of structure

The encoding of rules by the explicit encoding of the inferential dependency between predicates and pred-
icate roles, in conjunction with the use of temporal synchrony provides an efficient mechanism for propa-
gating dynamic bindings and performing reasoning. Conceptually, the proposed encoding of rules creates a
directedinferential dependency graph: Each predicate role is represented by a node in this graph and each
rule is represented by links between nodes denoting the roles of the antecedent and consequent predicates.
In terms of this conceptualization, it should be easy to see that the evolution of the system’s state of activity
corresponds to aparallel breadth-first traversal of the directed inferential dependency graph. Specifically, a
large number of rules can fire in parallel and the time taken to draw an inference just equalsl�, wherel is the
lengthof the chain of inference and� is the period of activity. In other words,Shrutisupports parallelism at
the knowledge-level and the time it takes to draw an inference is only proportional to the depth of inference.
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3.2 On the expected nature of rhythmic activity

Let us assume that rhythmic activity of the sort suggested byShrutiunderlies the representation and prop-
agation of dynamic bindings in the brain. What sort of activity should we then expect to find in the brain
during an episode of reflexive reasoning? As discussed in (Shastri and Ajjanagadde, 1993), the answer to
this question would vary dramatically depending upon our expectations about the nature of representations
employed by the brain.

If one believes in fully distributed representations and assumes that entities are represented as patterns
of activity overlargepopulations of cell, one would expect a large number of cells to participate in rhythmic
activity during an episode of reflexive reasoning. On the other hand, if one believes in a more compact
representation17 of the type espoused inShruti, one would expect arelatively small number of cells to do
so.

In view of the above, consider the observation that periodically firing cells form a small tail in the
distribution, and the spike intervals of a majority of cells yield a distribution that is more Poisson than
periodic (Freeman, 1993). What should one conclude from this observation? Does this observation support
the biological plausibility ofShrutior does it undermine it?

If one believes in fully distributed representations, one might be compelled to conclude that rhythmic
activity does not underlie the representation of dynamic bindings. But if one believes in relatively compact
representations, one would find strong evidence in support of the hypothesis that rhythmic activity underlies
dynamic bindings; since only a very small fraction of cells would be involved in rhythmic activity at any
point in time, the small tail constitutes just the right sort of evidence.

Let us consider a thought experiment to illustrate the nature of rhythmic activity in higher-order cortical
areas entailed by a system such asShruti. Assume that the system is in a ‘quiescent’ state, i.e., it is not
receiving any stimulus and it is not engaged in any systematic thought. At this time the nodes in the system
would be firing with some background rate, perhaps Poisson. Now assume that the dynamic fact ‘John
bought a Rolls Royce’ is injected into the system. Consequently, we would expect two trains of rhythmic
activity to propagate in the system. One train would originate at the John and buyer clusters and rapidly
expand to include other clusters representing owner, person, wealthy, etc. A second train of activity would
originate at the Rolls-Royce and buy-object clusters and expand to include other clusters such as car and
own-object. This rhythmic activity might last a second or so, after which the synchronization might break
down, though the active nodes may continue firing above the background rate for some time.

Even if the reflexive reasoning resulting from the input “John bought a Rolls Royce” were to activate
several hundred relations, types, and features, the total number of cells engaged in synchronous activity
during this episode of reasoning would remain relatively small – perhaps no more than105. Furthermore
these cells would be physically distributed in the area(s) where conceptual knowledge is represented. This
estimate is extremely crude and speculative, but it does convey the essential point, namely, even if we knew
which areas of the brain encode conceptual knowledge and even if we recorded from cells in these areas,
we would see an extremely small fraction of cells participating in synchronous activity during any given
episode of reflexive reasoning.

Finally, consider an extendedShruti-like cognitive system. Such a system would be capable of respond-
ing to continuous stimuli and shifting its focus of attention. The dynamics of such a system would be far
more complex than the simple oscillatory patterns depicted in Figure 9. In such a system, the frequency of
oscillations will vary constantly since the period will decrease whenever entities drop out of the focus of
attention, and increase whenever entities enter the focus of attention. Furthermore, different modalities in
the system may fire at different frequencies and have their own phase distribution. Therefore, the rhythmic
activity observed in such a system will be far more complex than the activity portrayed in Figure 9.

17Recall that each node inShruti corresponds to a small, but physically dispersed, cluster of cells. If we assume that such a
cluster contains 100-1000 cells, it follows that the focal-cluster of a relation or entity might contain about 1000–10000 cells.
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4 Encoding of more complex rules

Figure 10 shows the encoding of a rule with multiple antecedents and consequents:
8 x:T1 y:T2 z:T3 P1(x,y) [w1,w2]̂ : P2(y,z) [w3,w4]) : Q1(x,w) [w5,w6]^ Q2(x,z) [w7,w8].

The enabler nodes of all consequents converge to the enabler node of the mediator, which then diverges to
the enabler nodes of all the antecedents. Similarly, the collector nodes of all the antecedents converge to
the collector node of the mediator, which then diverges to the collector nodes of all the consequents. Also
note that co-reference of roles in the consequent is captured by the convergence of appropriate consequent
role nodes to the same role-instantiation node. Similarly, the co-reference of role nodes in the antecedent is
captured by the same role-instantiation node being connected to the appropriate antecedent role nodes.

The weights depicted in Figure 10 can be interpreted informally as follows:
w1: 8 x:Agent y:Agent z:Thing Support( P1(x,y)j cons).
w2: 8 x:Agent y:Agent z:Thing Support(antj P1(x,y)),
w3: 8 x:Agent y:Agent z:Thing Support( P2(x,y)j cons).
w4: 8 x:Agent y:Agent z:Thing Support(antj: P2(y,z)),
w5: 8 x:Agent y:Agent z:Thing Support(consj Q1(x,w)),
w6: 8 x:Agent y:Agent z:Thing Support(: Q1(x,w)j ant).
w7: 8 x:Agent y:Agent z:Thing Support(consj Q2(x,z)),
w8: 8 x:Agent y:Agent z:Thing Support(Q2(x,w)j ant).

In the above,ant refers to the situation describing the antecedent as a whole, andconsrefers to the situation
describing the consequent as a whole.
In general rules have the following form:

9x1:X1; : : : ; xp:Xp 8y1:Y1; : : : ; yr:Yr ECFant P1(: : :)[a1; b1] ^ � � � ^ Pn(: : :)[an; bn] )

9u1; : : : ; ut ECFcons Q1(: : :)[c1; d1] ^Qm(: : :)[cm; dm]

whereinPi are positive or negative literals, an argument ofPi can be an entity or one of the variablesxi
andyi. An argument ofQ can be an entity or one of the variablesxi, yi, andui. Xis andYis are types and
specify restrictions on the bindings of variables,ai; bi; ci, anddi are weights, andECFant andECFcons

are evidence combination functions for combining activations impinging on the mediator collector from
antecedent collector nodes, and the mediator enabler from the consequent enabler nodes, respectively.

4.1 Evidence combination

The enabler node of a rule’s mediator combines incoming evidence from various consequents of a rule to
compute the net support for the consequent as a whole. Similarly, the collector node of a rule’s mediator
combines incoming evidence from the various antecedents of a rule to compute the net support for the an-
tecedent as a whole. A variety of evidence combination functions (ECFs) can be deployed at these nodes.
In the past we have used functions such as:max, min, sigmoid, andaverage, but we are currently experi-
menting with more flexible evidence combination functions including a family of functions such assoft-and,
soft-min, average, soft-max, andsoft-or functions (Shastri and Wendelken, 1998; Wendelken and Shastri, in
preparation).

4.2 Some other features of rules

Rules inShruti can refer to attribute values of entities and also include comparison operations between
attribute values of entities. Thus a rule may state:

8(x:Object) closing-in(x,Self)̂ (av-extract(Speed,x)> av-extract(Speed,Self)))monitor(x) [800,1000];
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Figure 10: Encoding of the rule:8 x:T1 y:T2 z:T3 P1(x,y) [w1,w2]̂ : P2(y,z) [w3,w4]) : Q1(x,w)
[w5,w6] ^ Q2(x,z) [w7,w8]. Circuitry for enforcing type restrictions on role-fillers, and links from the role-
instantiation nodes to the type hierarchy have not been shown. The output level of the mediator enabler and
collector would be determined by a suitable activation combination function.
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the above says that the organism must monitor something that is closing in on it and is moving faster than
it. Hereav-extractis a connectionist structure that can extract values of specified attributes such asSpeed.
Shrutialso supports the setting of attribute values from inside of rules.

Rules can also include exception conditions. Thus one can say, if you buy an object you own it, unless
the object has been stolen. That is,

8 (x:Agent y:Thing) buy(x,y)) own(x,y) [a,b] unless stolen(y) [c,d];
In the above, the weights[a,b] are as before. Weightc indicates how much energy is directed into checking
the exception andd indicates how strongly the belief in the truth of the exception inhibits the firing of the
rule.

An exception condition introduced via an unless clause and a negative condition introduced in the an-
tecedent have different significance. While ignorance about an exception condition does not affect the total
support for the antecedent, ignorance about a condition in the antecedent does. Imagine that John buys a car,
and it is not known whether or not the car had been stolen. In this condition, the above rule would lead to
the inference “John owns the car” with a strength of aboutb. If however, the above rule were to be replaced
by:

8 (x:Agent y:Thing) buy(x,y)̂: stolen(y)) own(x,y) [a,b]
the strength of inference in a similar situation would typically be much less thanb, because only one of the
two antecedents is satisfied (the actual strength of inference would depend on the ECF used at the collector
node of the rule mediator).

4.3 Multiple instantiations of relations

The simultaneous activation of more than one instance of the same relation can lead to cross-talk between the
active instances of the relation. Consider the the simultaneous activation of two instances of the relationlove:
“John loves Mary” and “Tom loves Susan”. Unless the system is able to separate the bindings pertaining to
the two instances, the state of activity can give rise to spurious blends such as “John loves Susan” and “Tom
loves Mary”. This problem was described as the multiple-instantiation problem in (Shastri and Ajjanagadde,
1993).

Shrutiallows a bounded number of instances of each relation to be active at the same time without cross-
talk.18 The ability to support multiple instances of a relation, in turn, enablesShruti to compute inferences
involving boundedrecursion. For example,Shrutican encode and reason with rules such as:

1. 8(x:Animate, y:Animate) sibling(x,y)) sibling(y,x) [1000,1000];

2. 8(x:Animate, y:Animate, z: Animate) older(x,y)^ older(y,z)) older(x,z) [1000,1000];

3. 8(x:Animate, y:Animate, z:Animate) loves(x,y)^ loves(y,z)̂ : equal(x=z)) jealous(x,z) [a,b];

However, the tight bound on the number of instances of a relation that can be active simultaneously (see
the following section), places limits on the prolific use of such rules during reflexive reasoning. Note that
the use of rule (1) and rule (2) requires 2 and 3 instances of the same relation, respectively, to be active at
the same time.

In order to represent multiple active instances of a relation, the representation of a relation is augmented
andk focal-clusters are associated with each relation instead of one (herek is a parameter). Each relation
also has an associated “switching” network which prevents cross-talk between different active instances of

18In general, a large number of E-facts and T-facts associated with a relation can become active simultaneously. Since each
active relational instance can match several facts associated with that relation, the number of active facts can be much higher than
the number of active relational instances. For example, the relational instance encoding the query9x:T P(a,x)will match all facts
such asP(a,b), P(a,c), etc., whereb andc are instances of the typeT.
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the relation. A description of a connectionist realization of such a switch appears in (Mani and Shastri,
1993). More recently, we have augmented the representation of a bank of focal-clusters such that multiple
instances of a relation can dynamically collapse into a single instance if the entities participating in the two
instances collapse into a single entity.

An alternate solution to the multiple-instantiation problem, using two levels of synchronous activity
was described in (Shastri and Ajjanagadde, 1990b). Therein it was proposed that fine grained synchroniza-
tion can be used to bind roles and entities, and coarse grained synchronization can be used to bind all the
role-entity bindings pertaining to a single relational instance. A related solution using period doubling is
described in (Sougne, 1998).

5 Constraints and predictions

Shruti identifies a number of representational and processing constraints on reflexive processing in addition
to the constraint on the form of rules discussed above. These relate to the capacity of the “working memory”
underlying reflexive processing and the bound on the depth of reasoning.

5.1 Working memory underlying reflexive processing

Dynamic bindings, and hence, active relational instances (i.e., active facts) are represented inShruti as a
rhythmic pattern of activity over nodes in the LTM network. In functional terms, this transient state of
activation holds information temporarily during an episode of reflexive reasoning and corresponds to the
working memory underlying reflexive reasoning(WMRR). Note that WMRR is just the state of activity of
the LTM network and not a separate buffer.

Shrutipredicts that the capacity of WMRR is very large but at the same time it is constrained in critical
ways. Most proposals characterizing the capacity of the working memory underlying cognitive processing
have not paid adequate attention to the structure of items in the working memory and their role in processing.
For example, proposals such as Just and Carpenter (1992) characterize working memory capacity in terms
of “total activation”. In contrast, the constraints on working memory capacity predicted byShruti depend
not on total activation but rather on the maximum number ofdistinctentities that can participate in dynamic
bindings simultaneously, and the maximum number of instances of any given relation that can be active
simultaneously.

5.1.1 Bound on the number of distinct entities referenced in WMRR

During an episode of reasoning, each entity involved in dynamic bindings occupies a distinct phase in the
rhythmic pattern of activity. Hence the number of distinct entities that can occur as role-fillers in relational
instances (facts) active in the WMRR cannot exceedb�max=!c, where�max is the maximum delay be-
tween two consecutive firings of cell-clusters involved in synchronous firing and! equals the width of the
window of synchrony — i.e., the allowable lead/lag between the firing of synchronous cell-clusters. Note
that the activation of an entity together with all its active super-concepts counts as onlyoneentity. Thus the
synchronous activation of Agent, Human, and John clusters counts as the activation of a single entity.

Assuming that synchronous activity underlying dynamic bindings occurs in the
 band, a neurally plau-
sible value of�max is about 33 milliseconds. Similarly, a plausible estimate of! suggested by a statistical
analysis of synchronous activity (Gray, Engel, Koenig, and Singer, 1991) is about 6 milliseconds. These
estimates of�max and! lead to the following prediction: As long as the number of distinct entities serving
as role-fillers in active facts is five or less,! will be more than 6 milliseconds, and hence, there will be
very little cross-talk among dynamic bindings. However, if more than five entities occur as role-fillers in
active facts, the effective! would have to shrink to accommodate all the active entities. As! shrinks, the
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possibility of cross-talk between dynamic bindings would increase until eventually, the cross-talk would
become excessive and disrupt the system’s ability to perform systematic reasoning. Given the noise and
variation indicated by the data on synchronous activity (Gray et al. 1991), it appears unlikely that! can be
less than 3 milliseconds. Hence we predict that anupper boundon the number of distinct entities that can
be referenced by active facts is less than 10. This prediction is consistent with our belief that most cognitive
tasks performed without deliberate thought tend to involve only a small number of distinct entities at a time
— though of course, these entities may occur in multiple situations and relationships.

Given the remarkable match between the bound on the number of entities that may be referenced by the
facts active in the WMRR on the one hand, and7 � 2, the robust measure of short-term memory capacity
suggested by (Miller 1956) on the other, Ajjanagadde and Shastri had predicted that temporal synchrony
may also underlie other short-term and dynamic representations (see Ajjanagadde and Shastri, 1991 pp.
131; Shastri, 1992 pp. 162; Shastri and Ajjanagadde, 1993 pp. 443). In a similar spirit, Horn and Usher
(1991) had observed that limits on the number of synchronous patterns that can be co-active might explain
the limits on attention capacity (pp. 42). Recent experimental findings as well as computational models lend
support to this prediction (see Lisman and Idiart, 1995; Jensen and Lisman, 1996; Luck and Vogel, 1997).

Note that the active facts represented in the WMRR during an episode of reflexive reasoning should not
be confused with the small number of short-term facts an agent mayovertlykeep track of duringreflective
processing and problem solving. WMRR should also not be equated with the short-term memory implicated
in various memory span tasks (Baddeley, 1986). In our view, in addition to the overt working memory, there
exist as many “working memories” as there are major processes or modalities in the brain since a “working
memory” is nothing but the state of activity of a network. Some recent findings seem to support this view
(Duncan, Martens, and Ward, 1997).

5.1.2 Bound on the multiple instantiation of relations

The capacity of WMRR is also limited by the constraint that only a small number of instances of each
relation may beactiveat the same time. Recall that the total number of relational instances active throughout
the network can be very high.

The cost of maintainingk active instances of a relation turns out to be significant in terms of space
and time. For example, the number of nodes required to encode a rule is proportional to the square ofk.
Furthermore, the worst case time required for propagating multiple instances of a relation also increases by
a factor ofk. In view of the additional space and time costs associated with maintaining multiple instances,
and given the necessity of keeping these resources within bounds in the context of reflexive processing, we
believe that the value ofk during reflexive reasoning is quite small. The computational requirements of tasks
such as parsing and inference suggest that a multiple-instantiation bound of less than three would be overly
limiting. At the same time, a system with a bound of four would require almost twice as many nodes as a
system with a bound of three. This suggests that a bound greater than three for all relations, across the board,
may be too expensive. Consequently, we predict that in general, relations have a multiple-instantiation limit
of three, and only select relations that participate in rules requiring multiple instances of the relation may
have a bound greater than three.

The multiple-instantiation bound implies that it is expensive to apply theabstractnotion of transitiv-
ity in a reflexive manner. The abstract assertion that the relationP is transitive requires a rule such as
8x; y; zP (x; y) ^ P (y; z) ) P (x; z) and each firing of this rule involves three instances ofP . But given
that transitivity plays an important role in common sense reasoning — to wit, reasoning about sub and super-
categories, part-of relationships, greater than, less than, etc. — the limit on reasoning with transitivity might
seem overly restrictive. However, this is not the case. As argued in (Shastri and Ajjanagadde, 1993), as far
as query answering is concerned, humans seem to be good at dealing with the transitivity of only a small
number of relations. In these cases, the transitivity of the appropriate relations is encodedexplicitly and
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the computation of transitivity does not require the use of an abstract transitivity rule. For example, if the
sequence in which letters appear in the English alphabet is encoded explicitly in the system (e.g., via a chain
of links), then given a pair of letters(i; j), the system can readily determine whether or noti comes before
j, by propagating activity along the chain of links that encode the ordering of letters in the alphabet. For a
more complex example, consider the organization of concepts in anis-ahierarchy. The specialized structure
described in Section 2.3 converts the problem of computing the transitive closure ofis-a relations from one
of applying the transitivity rule8 x,y,z is-a(x,y)̂ is-a(y,z)) is-a(x,z), to one of spreading activation along
links in the structure.

5.1.3 Unbounded number of rule firings

Shrutidemonstrates that a large number of rules — even those containing variables — may fire in parallel
as long as no relation is instantiated more than� 3 times and the number of distinct entities referenced
by the active facts remains below 10. This may be contrasted with Newell’s suggestion (1980) that while
“productions” (i.e., rules) without variables can be executed in parallel, productions with variables may have
to be executed in a serial fashion. ThusShruti suggests that neurally plausible architectures can support a
high degree of parallelism — even when dealing with complex knowledge involving variables.

5.2 Bound on the depth of the chain of reasoning

Consider the propagation of synchronous activity along a chain of role ensembles during an episode of
reflexive reasoning. Two things might happen as activity propagates along the chain of role ensembles.
First, the lag in the firing times of successive ensembles may gradually build up due to the propagation
delay introduced at each level in the chain. Second, the dispersion within each ensemble may gradually
increase due to the variations in the propagation delay of links and the noise inherent in synaptic and neu-
ronal processes. While the increased lag along successive ensembles will lead to a “phase shift”, and hence,
binding confusions, the increased dispersion of activity within successive ensembles will lead to a grad-
ual loss of binding information. Increased dispersion would mean less phase specificity, and hence, more
uncertaintyabout the role’s filler. Due to the increase in dispersion along the chain of reasoning, the prop-
agation of activity will correspond less and less to a propagation of role bindings and more and more to an
associative spread of activation. For example, the propagation of activity along a chain of rules such as:
P1(x; y; z) ) P2(x; y; z) ) :::Pn(x; y; z) due to a dynamic factP1(a; b; c) may lead to a state of activation
where all one can say aboutPn is this: there is an instance ofPn which involves the entitiesa, b, andc, but
it is not clear which entity fills which role ofPn. In view of the above, it follows that the depth to which an
agent may reason during reflexive reasoning is bounded.

5.3 Limits on reflexive processing — some evidence from parsing

Henderson (Henderson, 1994) has developed an on-line parser for English using aShruti-like architecture
whose speed is independent of the size of the grammar and which can recover the structure of arbitrary long
sentences as long as the dynamic state required to parse the sentence does not exceed the capacity of the
parser’s working memory. The parser models a range of linguistic phenomena and shows that the constraints
on the parser’s working memory help explain several properties of human parsing involving long distance
dependencies, garden path effects and our limited ability to deal with center-embedding. This suggests
that the working memory constraints resulting fromShruti have implications for other rapid processing
phenomena besides reasoning.
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6 A simple example involving conflicting evidence

An agent with limited resources must sometimes act with only limited attentional focus and often under
time pressure. This means that an agent may sometimes overlook relevant information and act in an erro-
neous manner. Extended evaluation or an appropriate cue, however, might make the necessary information
available and lead to a correct response. Several interesting aspects of such a situation are captured in the
following scenario which we have referred to as thePost Office Example(Shastri and Grannes, 1996): John
runs into Mary on the street. “Where are you going?” asks John. “To the post office,” replies Mary. “But
isn’t today Presidents’ Day?” remarks John. “Oops! I forgot that today was a federal holiday,” says Mary
after a momentary pause and heads back.

Clearly, Mary had sufficient knowledge to infer that “today” was a postal holiday. But the fact that she
was going to the post office indicates that she had assumed that the post office was open. So in a sense,
Mary held inconsistent beliefs. John’s question served as a trigger and brought the relevant information
to the surface and made Mary realize her mistake. A cognitively plausible model should be capable of
modeling such situations.

The agent’s knowledge is modeled as follows (refer to Figure 11):

1. presidents-day(day)) federal-holiday(day) [1000,1000],

2. 3rd-Mon-Feb(day)) presidents-day(day) [1000,1000],

3. 3rd-Mon-Feb(16-Feb-98) [1000],

4. :3rd-Mon-Feb(20-Feb-98) [1000],

5. weekday(day)̂ post-office(x)) open(x,day) [900,800]

6. weekend(day)̂ post-office(x)) :open(x,day)[900,1000],

7. federal-holiday(day)̂ post-office(x)) :open(x,day) [200,1000], and

8. post-office(PO) [1000].

The significance of items (1), (5), (6), and (7) is fairly obvious. Item (2) specifies that third Mondays in
February are Presidents’ Days. Ideally3rd-Mon-Febwould be realized as a mental process (or a schema).
We are indirectly simulating such a procedure by assuming that such a mental process is accessed via the
relation3rd-Mon-Febin order to determine whether the day bound to its role is a third Monday in February.
In this example, this mental “calendar” consists of two facts stated in items (3) and (4). Item (8) states that
PO is a particular post office. Items (1), (2), (6), and (7) are categorical rules about the domain, but item
(5) corresponds to a default rule. We assume that “Today” is a concept which is bound each day to the
appropriate date and to “weekday” or “weekend” depending on the day. These bindings are assumed to be
available as facts in the agent’s memory.

Imagine it is 16-Feb-98, which is Presidents’ Day, and Mary is planning a trip to the post office (PO).
Her “go-to-post-office” schema has the precondition that the post office must be open so it poses the query
open(PO,Today)?Assume that after posing the query the schema monitors the activity of the collectors
+:open and–:openand accepts an answer based on the criterion:Accept a “yes” (“no”) answer if the +
(–) collector stays ahead and exceeds a threshold,�accept, for some minimum length of time,�t. Once the
schema accepts an answer, it terminates the query and proceeds with its execution.

Since “Today” is bound to16-Feb-98, the factweekday(16-Feb-98)is present in Mary’s memory. When
the schema asks the queryopen(PO,Today)?, the default rule about post offices remaining open on weekdays
becomes active first and activates+:open (refer to Figures 11 and 12). If we assume�accept to be 0.5, the
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Figure 11: The network representation of the Post Office Example. Rule mediators, links between roles,
detailed encoding of facts, the relationweekendand the encoding of rule (6) is not shown. Rules (5) and (7)
are multiple antecedent rules.
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Figure 12: The activation trace for the queryopen(PO,Today)?; where today is 16-Feb-98. The vertical axis
denotes activation level and has a scale factor of 1000. The horizontal axis denotes number of simulation
steps.
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Figure 13: The activation trace for the queryopen(PO,Today)?— today being 20-Feb-98 — allowed to run
its full course.
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Figure 14: The activation trace for the query “Isn’t today Presidents’ Day?” posed to Mary on 20-Feb-98
long after her “go-to-post-office” schema has posed the queryopen(PO,Today)?and accepted a no answer.

activation of+:open exceeds�accept after 12 cycles and stays above threshold for about 20 cycles. During
this time,–:opendoes not receive any activation and stays at 0. If we assume that�t is 10 cycles, the
schema will accept+:open as an answer and withdraw the query. So Mary will set off to the post office.19

Had the query remained active, the inference process would have eventually inferred that the post of-
fice is not open today. The result of the inferential process, if the queryopen(PO,Today)?had not been
terminated by the schema, is shown in Figure 13. The dark lines show the activation of the collectors of
openwhile the dotted lines show the activations of the collectors of some other relevant relations. First it is
inferred that today is a weekday. Next it is inferred that today is the third Monday in February. As a result,
the inference that today is Presidents’ Day, and hence, a federal holiday, follows. This in turn leads to the
inference that the post office is not open today.

Subsequently, John asks Mary: “Isn’t today Presidents’ Day?”. This causes the language process to
activate?:Presidents-dayand bind the role of Presidents’ Day to16-Feb-98. This leads to the activation
of ?:3rd-Mon-Feband then+c:3rd-Mon-Feb(via the fact3rd-Mon-Feb(16-Feb-98)). The activation from
+c:3rd-Mon-Febworks its way back and activates–:open. Since this activation is due to categorical rules
(rules ii, i, and vii), it is stronger than that arriving at+:open from the default rule (item 5). The mutual in-
hibition between the highly activated–:openand the moderately activated+:open results in the suppression
of +:open, making Mary realize that the post office is not open (see Figure 14).

7 Mapping Shrutionto Parallel Machines

There are several aspects ofShruti that lead to an efficient knowledge representation and reasoning system
when it is mapped onto parallel machines. These include some basic features of structured connectionism
and constraints on rules and derivations suggested byShruti.

Shruti is a massively parallel model but makes use of nodes that perform simple computations and
communicate via simple scalar messages. Secondly, unlike many neural network models,Shruti is sparsely
connected. The most important source ofShruti’s efficiency, however, is that it is alimited inference system
(see Section 5). The constraints imposed byShruti translate into bounds on system resources and, in turn,

19The values of�accept and�t cited above are the ones used in the simulation.
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lead to a fast and efficient parallel implementation. Since the number of distinct entities that can be active
during an episode of reasoning is bounded, the number of bindings contained in any instance of a relation
is quite small. Consequently, the amount of information that must be communicated between relations is
also quite small. Moreover, the depth of inference is bounded. This constrains the spread of activation in
the network and further limits resource requirements.

There is an excellent match between the inter-node communication requirements ofShrutiand the active
message facility provided by the CM-5 for low-latency interprocessor communication of short messages.
Given that nodes in our model are required to discriminate among only a small number of distinct phases,
the “message” carried by a spike train can be encoded using just a few bits. Consequently, information
pertaining to a whole cluster of cells can be encoded within a single CM-5 active message. Indeed, we
were able to pack all the information that one relation cluster has to communicate to another relation cluster
during rule-firing into a single active message!

The mapping ofShruti(circa 1993) onto the CM-5 is described in (Mani 1995; Shastri and Mani, 1997).
The resulting system can encode knowledge bases with over 500,000 (randomly generated) rules and facts,
and yet respond to a range of queries requiring derivations of depth five in under 250 milliseconds. Even
queries with derivation depths of eight are answered in well under a second. The possibility of mapping
Shrutionto a cluster/network of workstations and personal computers is also being investigated.

8 Conclusion

Shruti is a neurally plausible model of reflexive reasoning. It demonstrates that systematic inference with
respect to a large body of general as well as specific knowledge can be the spontaneous and natural outcome
of a neurally plausible system.Shruti’s encoding of commonsense knowledge corresponds to a vividmodel
of its environment and when nodes inShrutiare activated to reflect a given state of affairs in the environment,
it spontaneously simulates the behavior of the external world and, in doing so, finds coherent explanations
and makes predictions.

Shruti derives its representational and inferential power from blending structured representations with
temporal synchrony. It shows that given the appropriate structure, networks that can propagate and detect
synchronous activity can solve many seemingly difficult problems in the representation and processing of
high-level conceptual knowledge.

Shrutimakes several specific predictions about the nature of reflexive reasoning and the capacity of the
working memory underlying reflexive reasoning. These predictions are verifiable and it is hoped that they
will be explored further by experimental psychologists.

In this paper we described several enhancements ofShruti. These enable it to deal with negation and
inconsistent beliefs, encode evidential rules and facts, perform inferences requiring the dynamic instantiation
of entities, and seek coherent explanations of observations. A novel representation of type hierarchies
incorporated intoShruti has also been described. All the features ofShruti presented in this article have
been implemented and verified using simulations. Other enhancements listed in Section 1 will be described
in detail in forthcoming publications. These include a systematic treatment of evidence combination using
a family of soft evidence combination functions; priming of entities, types, facts, and rules; competition
between multiple entities and context-sensitive unification of entities; and use of supervised learning to
modify rule and fact strengths in order to improve the network’s domain model.

A large number of issues remain open. Several of these concern learning, in particular, the learning
of new relations and new rules (mappings). In (Shastri, 1997a) its is shown that a recurrent network can
learn rules involving variables and semantic restrictions using gradient-descent learning. While this work
serves as a proof of concept, it does not address issues of scaling and catastrophic interference. There is
growing interest in the learning of structures in neural networks (e.g., Goller and Kuchler, 1996; Frasconi,
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Gori, and Sperduti, 1998). Some of this work has its antecedents in the work on Recursive Auto-Associative
Memories (Pollack, 1990). It remains to be seen how well these techniques will scale up when applied to
the domain of commonsense where the size of the “knowledge base” could easily run into a million items.
Several researchers are pursuing solutions to the problem of learning structure in the context of language
acquisition (e.g., Regier, 1996; Bailey, Chang, Feldman, and Narayanan, 1998; Gasser, 1998). The results
of this research are expected to provide important insights into the acquisition and processing of conceptual
knowledge.

In ongoing work, M.C. Cohen, B. Thompson, C. Wendelken and the author are augmentingShruti to
integrate the propagation ofbeliefwith the propagation ofutility. The augmented model will encode beliefs,
as it does now, and also encode utilities associated with the occurrences of certain world states (which states
are desirable and which are not). The integrated system would be capable of using this knowledge about
utility to direct its search for explanations, and predictions, and focus its activation along paths that promise
to have a high utility.

The encoding of E-facts inShruti solves the representational problem of encoding E-facts, but is not
amenable to learning. An alternate coding that satisfies the representational requirements and at the same
time is also amenable to rapid learning has been developed (Shastri, 1997b, 1998). It is shown that a dynamic
representation of a relational instance (fact) can be transformed rapidly into a persistent structure within a
system whose architecture and circuitry is similar to that of the hippocampal formation. In future work, we
plan to integrate this model of episodic memory (Smriti) with Shruti.

We also plan to integrateShruti with other neurally plausible components capable of performing syn-
tactic processing and providing a linkage between the syntactic and semantic tiers of language. Finally, we
plan to pursue a more physiologically realistic implementation ofShruti. It is hoped that such a simulation
would enable us to investigate the effect of jitter and noise found in cortical discharges (e.g., Softky and
Koch, 1992) on the propagation of dynamic bindings. This would help refine the constraints on reflexive
reasoning suggested byShrutiand perhaps, lead to further insights into the nature of relational information
processing in the mind/brain.
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