CS 182
Midterm review

Outline 1/3

- Biology
- Neuron mechanics
- spiking, neurotransmitters, ion channels, Na+
- Development
- growth cones, chemical gradients, activitydependent pruning
- Models
- McCullough-Pitts model
- backpropagation: minimize error by slow steps
- triangle node
- recruitment learning

Outline 2/3

- Psych experiments
- Stroop task, priming, spreading activation
- Brain study
- PET, fMRI, EEG, MEG, TMS, lesion, single-unit
- Learning
- backprop, Hebbian, LTP, calcium, retrograde, blank slate (not)
- Colors
- language variations and invariants; intermediate representations

Outline 3/3

- Categories
- basic categories: functional distinction $\& \in$ effects
- category structure
- Schemas
- Image schemas
- FrameNet
- Regier's model
- hand-built feature extraction, learned mapping

Neurobiology

- Ion pumps
- polarized
- resting potential
- ions: Na+, K+, Cl-
- Neurotransmitters
- voltage admits Ca+, vesicles to release transmitters
- bind to ionotropic receptors
- allow ions into postsynaptic cell
- different types of ions for different receptors/transmitters

Neurobiology 2

- Action potential
- threshold
- all-or-nothing
- voltage-gated channels
- hysteresis \& refractory period
- Myelin
- electrical transmission
- only in mammals

Neural development

- Neurons migrate to correct positions
- Grow axons with "growth cones" on tips
- Axons follow chemical gradients in increasing or decreasing directions, attracting or repelling them
- brain areas grow axons generally together
- Axons meet other neurons, form synapses
- overconnect
- prune based on activity
- humans not blank slate!

The McCullough-Pitts Neuron

y_{j} : output from unit j

$W_{i j}$: weight on connection from j to i
x_{i} : weighted sum of input to unit i

Backpropagation

- Minimize squared error
- gradient descent
- use momentum (constant times previous change)
- Minimum error on training set may not be minimum error on all data!
- overfitting
- memorize training data at expense of generalization
- reduce it by checking against a validation set or just stopping early

Triangle nodes

- Triangle nodes
- Reciprocal connections to three other units
- Activates whenever 2 units activate
- Activates all 3 units
- Can be implemented as group of McCullough-Pitts neurons
- Recruitment learning
- Intermediate units activated by multiple sources strengthen connections to sources
- Now intermediate unit represents conjunction

Hebbian learning

- Neurons that fire together, wire together
- If presynaptic neuron helps cause postsynaptic neuron to fire, synapse strengthened
- Biology
- Ca2+ enters postsynaptic cell when synapse active and cell fires
- Temporarily makes receptors more sensitive; also slowly adds new receptors
- releases nitrous oxide (NO)--retrograde messenger
- causes changes in presynaptic neuron, too
- releases more neurotransmitter

Psych experiments

- Measure behavioral differences that indicate processing differences
- Stroop task
- difficulty in reading words in other color
- indicates topic-specific interference in language processing
- Word priming
- related words make recognizing words faster
- timing-dependent effects
- opposite words speed up without time to process; slow down processing with more time
- explained by slower-onset inhibition

Brain study

- PET
- fMRI
- lesion
- EEG
- single-unit recording
- TMS

Colors

- Biology
- 3 input signals
- neural representations of sums $\&$ differences
- e.g. yellow = green + red - blue
- Psychophysics
- quantitative measurements of psychological quantities
- e.g. find out how small a color difference subjects can discern
- Language
- different languages have different groups
- certain groupings maintained: no one groups red + green
- certain central concepts maintained: no one says turquoise is a good example of "grue" (green-blue color group)

