CS 182

Leon Barrett and Will Chang Thanks to Eva Mok and Joe Makin

Q: What did the Hollywood film director say after he

finished making a movie about myelin?

A: "That's a wrap!"

http://faculty.washington.edu/chudler/jokes.html

Announcements

- a2 is out, due next Tuesday 11:59pm
 - play with fannExplorer
 - you can run it on the server, but if you want to do a lot of playing, you might want to download it; search for FANN

Where we stand

- Last Week
 - Neurons
 - Neural development
- This Week
 - Idealized neurons and connectionist units
 - Spreading Activation, triangle nodes
- Coming up
 - Backprop (review your calculus!)

Serial and Parallel

- What is the difference between serial and parallel computation? Can you give an example of this contrast?
 - Serial computation takes time for every piece of the computation
 - Parallel computations occur at the same time
 - For example, face recognition is parallel don't have to search through all possible people
 - Listing family members is serial can't think of them all at once

Neuron models

- What is a McCullough-Pitts neuron?
 - Calculate "activation" by weighted sum of inputs
 - Use a function to map activation to output
- What sorts of output functions does it use?
 - Linear why is this bad?
 - Threshold
 - Sigmoid smoothed threshold

The McCullough-Pitts Neuron

y_i: output from unit j

W_{ij}: weight on connection from j to i

x_i: weighted sum of input to unit i

Let's try an example: the OR function

i ₁	i ₂	\mathbf{y}_0
0	0	0
0	1	1
1	0	1
1	1	1

- Assume you have a threshold function centered at the origin
- What should you set w_{01} , w_{02} and w_{0b} to be so that you can get the right answers for y_0 ?

Many answers would work

$$y = f(w_{01}i_1 + w_{02}i_2 + w_{0b}b)$$

recall the threshold function

the separation happens when $w_{01}i_1 + w_{02}i_2 + w_{0b}b = 0$

move things around and you get

$$i_2 = -(w_{01}/w_{02})i_1 - (w_{0b}b/w_{02})$$

Neuron models

- If neurons spike, what biological feature do non-integer values correspond to?
 - Firing rate
- What is unbiological about the McCullough-Pitts model?
 - Time is ignored
 - Weights are unlimited
 - Hugely simplifies computations
 - Some people propose that real neurons do complicated quantum-mechanical things

Neuron models

- How does a Sigma-Pi neuron differ from a McCullough-Pitts neuron?
 - It multiplies sets of inputs

Sigma-Pi units

Sigma-Pi Unit

$$h_j = \sum_i w_{ji} \prod_k x_{i_k}$$

How we can model the triangle node with McCullough-Pitts Neurons?

Necker-Cube like illusion

Stroop effect

- What is the Stroop effect?
 - takes longer to say what color a word is printed in if it names a different color
 - suggests interaction of form and meaning (as opposed to an encapsulated 'language module')
- Red Blue Green Orange Red Yellow
- Green Yellow Red Blue Yellow Orange

'Word superiority effect'

- What is the word superiority effect?
 - it's easier to remember letters if they are seen in the context of a word
 - militates against 'bottom-up' model, where word recognition is built up from letters
 - suggestion: there are top-down and bottom-up processes which interact

Priming and Related Concepts

- What is priming, and how do we measure it?
 - Faster completion of a task
 - Present stimulus while subject performing task
 - Different stimulus timing causes different effects
- What is the effect of suggesting an alternate meaning of a word, like saying "They all rose"?
 - If early, primes
 - If late, decreases priming

"They all rose"

triangle nodes:

when two of the neurons fire, the third also fires

model of spreading activation

Body part understanding task

- Tests priming and interference when showing images of actions
- It turns out that viewing actions affects recognizing action words
- Can you explain the results (next slide)?

Preliminary Behavior Results

Same Action Other Effector Same Effector

40 Native Speakers

788 804 871

Elimina te RT > 2 sec.

767 785 825

Allopenna, Magnuson & Tanenhaus (1998)

'Pick up the beaker'

Eye tracking computer

Do rhymes compete?

• Cohort (Marlsen-Wilson): onset similarity is primary because of the incremental nature of speech

(serial/staged; Shortlist/Merge)

- Cat activates cap, cast, cattle, camera, etc.
- Rhymes won't compete
- NAM (Neighborhood Activation Model; Luce): global similarity is primary
 - Cat activates bat, rat, cot, cast, etc
 - Rhymes among set of strong competitors
- TRACE (McClelland & Elman): global similarity constrained by incremental nature of speech
 - Cohorts and rhymes compete, but with different time course

TRACE predictions

Allopenna et al. Results

Study 1 Conclusions

- As predicted by interactive models, cohorts and rhymes are activated, with different time courses
- Eye movement paradigm
 - More sensitive than conventional paradigms
 - More naturalistic
 - Simultaneous measures of multiple items
 - Transparently linkable to computational model
- Time locked to speech at a fine grain

Theoretical conclusions

- Natural contexts provide strong constraints that are used
- When those constraints are extremely predictive, they are integrated as quickly as we can measure
- Suggests rapid, continuous interaction among
 - Linguistic levels
 - Nonlinguistic context
- Even for processes assumed to be low-level and automatic
- Constrains processing theories, also has implications for, e.g., learnability