CS 182 Sections 101 - 102 Leon Barrett

bad puns alert!

Announcements

- a3 part 1 is due tomorrow night (submit as a3-1)
- The second tester file is up, so please start part 2.
- If you don't like your solution to Part 1, you can get our solution on Sunday morning.
- The quiz is graded (get it after class).

Where we stand

- Last Week
 - Learning
 - backprop
 - color
- This Week
 - cognitive linguistics

Back-Propagation Algorithm

Sigmoid:
$$y_i = f(x_i) = \frac{1}{1 + e^{-x_i}}$$

We define the error term for a single node to be $t_i - y_i$

Gradient Descent

it should be 4-D (3 weights) but you get the idea

Equations of Backprop

- Weight update shown on following slides; important equations highlighted in green
- Note momentum equation:
 - dW(t) = change in weight at time t
 - dW(t-1) = change in weight at time t-1
 - so using momentum:
 - dW(t) = -learning_rate * -input * delta(i) +
 momentum * dW(t-1)
 - the first part of that comes from last slides below
 - the second part is the momentum term

The output layer

$$W_{ij} \leftarrow W_{ij} - \alpha \cdot \frac{\partial E}{\partial W_{ij}}$$
$$\Delta W_{ij} = -\alpha \cdot \frac{\partial E}{\partial W_{ij}}$$

$$\frac{\partial E}{\partial W_{ij}} = \frac{\partial E}{\partial y_i} \cdot \frac{\partial y_i}{\partial x_i} \cdot \frac{\partial x_i}{\partial W_{ij}} = -(t_i - y_i) \cdot f'(x_i) \cdot y_j$$

earning rate

The derivative of the sigmoid is just $y_i(1-y_i)$

$$\Delta W_{ij} = -\boldsymbol{\alpha} \cdot -(t_i - y_i) \cdot y_i (1 - y_i) \cdot y_j$$

$$\Delta W_{ij} = -\alpha \cdot -y_j \cdot \delta_i \qquad \delta_i = (t_i - y_i) \cdot y_i (1 - y_i)$$

The hidden layer

$$\Delta W_{jk} = -\alpha \cdot \frac{\partial E}{\partial W_{jk}}$$

 $\frac{\partial E}{\partial W_{jk}} = \frac{\partial E}{\partial y_j} \cdot \frac{\partial y_j}{\partial x_j} \cdot \frac{\partial x_j}{\partial W_{jk}}$

$$\frac{\partial E}{\partial y_j} = \sum_i \frac{\partial E}{\partial y_i} \cdot \frac{\partial y_i}{\partial x_i} \cdot \frac{\partial x_i}{\partial y_j} = \sum_i -(t_i - y_i) \cdot f'(x_i) \cdot W_{ij}$$
$$\frac{\partial E}{\partial W_{jk}} = \left(-\sum_i (t_i - y_i) \cdot f'(x_i) \cdot W_{ij}\right) \cdot f'(x_j) \cdot y_k$$

$$\Delta W_{jk} = -\alpha \cdot \left(-\sum_{i} (t_{i} - y_{i}) \cdot y_{i} (1 - y_{i}) \cdot W_{ij} \right) \cdot y_{j} (1 - y_{j}) \cdot y_{k}$$

$$\Delta W_{jk} = -\alpha \cdot -y_{k} \cdot \delta_{j} \qquad \delta_{j} = \left(\sum_{i} (t_{i} - y_{i}) \cdot y_{i} (1 - y_{i}) \cdot W_{ij} \right) \cdot y_{j} (1 - y_{j})$$

$$\delta_{j} = \left(\sum_{i} W_{ij} \cdot \delta_{i} \right) \cdot y_{j} (1 - y_{j})$$

Let's just do an example

→ y_0 0.6224 $E = Error = \frac{1}{2} \sum_i (t_i - y_i)^2$ $E = \frac{1}{2} (t_0 - y_0)^2$ $E = \frac{1}{2} (0 - 0.6224)^2 = 0.1937$

 $\Delta W_{ij} = -\alpha \cdot -y_j \cdot \delta_i$ $\Delta W_{01} = -\alpha \cdot -y_1 \cdot \delta_0 = -\alpha \cdot -i_p \cdot \delta_0$ $\Delta W_{02} = -\alpha \cdot -y_2 \cdot \delta_0 = -\alpha \cdot -i_2 \cdot \delta_0$ $\Delta W_{0b} = -\alpha \cdot -y_b \cdot \delta_0 = -\alpha \cdot -b \cdot \delta_0$ $= \alpha \cdot -0.1463$ learning rate

 $\delta_{i} = (t_{i} - y_{i}) \quad y_{i}(1 - y_{i})$ $\delta_{0} = (t_{0} - y_{0}) \cdot y_{0}(1 - y_{0})$ $\delta_{0} = (0 - 0.6224) \cdot 0.6224(1 - 0.6224)$ $\delta_{0} = -0.1463$

suppose $\alpha = 0.5$ $\Delta W_{0b} = 0.5 \cdot -0.1463 = -0.0731$

Biological learning

- 1. What is Hebbian learning?
- 2. Where has it been observed?
- 3. What is wrong with Hebbian learning as a story of how animals learn?
 - hint it's the opposite of what's wrong with backprop

LTP and Hebb's Rule

 Hebb's Rule: neurons that fire together wire together

- Long Term Potentiation (LTP) is the biological basis of Hebb's Rule
- Calcium channels are the key mechanism

Why is Hebb's rule incomplete?

here's a contrived example:

During normal low-frequency trans-mission, glutamate interacts with NMDA and non-NMDA (AMPA) and metabotropic receptors.

With highfrequency stimulation, Calcium comes in

Recruitment learning

- •What is recruitment learning?
- •Why do we need it in our story?
- •How does it relate to triangle nodes?

Models of Learning

- Hebbian ~ coincidence
- Recruitment ~ one trial
- Supervised ~ correction (backprop)
- Reinforcement ~ delayed reward
- Unsupervised ~ similarity

Questions!

- 1. How do humans detect color biologically?
- 2. Are color names arbitrary? What are the findings surrounding this?

Questions!

- How do humans detect color biologically?
- Are color names arbitrary? What are the findings surrounding this?

A Tour of the Visual System

- two regions of interest:
 - retina
 - LGN

Rods and Cones in the Retina

http://www.iit.edu/~npr/DrJennifer/visual/retina.html

The Microscopic View

What Rods and Cones Detect

Notice how they aren't distributed evenly, and the rod is more sensitive to shorter wavelengths

Center / Surround

- Strong activation in center, inhibition on surround
- The effect you get using these center / surround cells is enhanced edges

top:	the stimuli itself
middle:	brightness of the stimuli
bottom:	response of the retina

• You'll see this idea get used in Regier's model

http://www-psych.stanford.edu/~lera/psych115s/notes/lecture3/figures1.html

Kuffler 1953

How They Fire

- No stimuli:
 - both fire at base rate
- Stimuli in center:
 - ON-center-OFF-surround fires rapidly
 - OFF-center-ON-surround doesn't fire
- Stimuli in surround:
 - OFF-center-ON-surround fires rapidly
 - ON-center-OFF-surround doesn't fire
- Stimuli in both regions:
 - both fire slowly

Kuffler 1953

Color Opponent Cells

- These cells are found in the LGN
- Four color channels: Red, Green, Blue, Yellow
- R/G, B/Y pairs
- much like center/surround cells
- We can use these to determine the visual system's fundamental hue responses

The WCS Color Chips

- Basic color terms:
 - Single word (not *blue-green*)
 - Frequently used (not *mauve*)
 - Refers primarily to colors (not lime)
 - Applies to any object (not *blonde*)

FYI: English has 11 basic color terms

Results of Kay's Color Study

Stage I	II	IIIa / IIIb	IV	V	VI	VII
W or R or Y	W	W	W	W	W	W
Bk or G or Bu	R or Y	R or Y	R	R	R	R
	Bk or G or Bu	G or Bu	Y	Y	Y	Y
		Bk	G or Bu	G	G	G
			Bk	Bu	Bu	Bu
		W		Bk	Bk	Bk
		R			Y+Bk (Brown)	Y+Bk (Brown)
		Y				R+W (Pink)
		Bk or G or Bu				R + Bu (Purple)
						R+Y (Orange)
						B+W (Grey)

If you group languages into the number of basic color terms they have, as the number of color terms increases, additional terms specify focal colors