

Week 8 Computational Level

Computational level

- Actions
 - hierarchical
 - goal-oriented
- Representations
 - Belief Nets
 - Petri Nets
- If we have time
 - Grammars

Actions

- Hierarchy present in humans
 - e.g. reflexes
 - plans are usually hierarchical
- Rod Brooks
 - hierarchical action system
 - goal-oriented
 - different levels and components interact
 - e.g. exploring behavior versus safety behavior
 - result: robust behaviors

X-Schemas and Petri Nets

- Petri nets
 - Finite State Machines but better!
 - Places
 - hold tokens
 - have semantic meaning
 - Transitions
 - can be enabled
 - can fire
 - consume tokens at inputs
 - place tokens at outputs

Petri Nets

- Asynchronous
 - any enabled transition can fire
 - or not fire
 - so we reason about what states are possible
- Analysis
 - determine what states are possible
 - determine how many times a transition might fire
 - determine whether deadlock is possible
 - etc.

X-Schemas

- Add several things
 - timed
 - stochastic
 - inhibitory arcs
 - enabling arcs

Stochastic petri nets

Stochastic petri nets

- Random timing of transition firing
 - exponential distribution
 - gives rise to random choice of which transition will fire
 - P(transition fires in the next tiny time|enabled) = f(transition)
 - Then P(transition fires next|enabled) =
 f(transition) / sum(f(enabled transitions))

Stochastic petri net example

• What is P(t3 ever fires)?

- Under what conditions will it fire?
- What is P(t3 fires | token in p1)?
- What causes there to be a token in p1?
- What is P(t1 fires)?
- How do you combine these events?

X-Schemas

- Active representation
- Has hierarchical actions
 - defined by network structure
- Actions have structure (e.g. ready, iterating, ongoing, failed, complete)
 - defined by network structure
- Properly-designed nets will be goal-directed
 - take best actions to reach goal, given current context
 - related to "reinforcement learning"

Bayes Nets

- Define a simple Bayes Net for passing a class
- Calculate some of the probabilities
- Use Bayes' Rule!