# CS 182 Sections 103 - 104

Leon Barrett
with slides inspired by Eva Mok and Joe Makin
April 18, 2007

## Announcements

- a8 out, due Tuesday, April 24th, in class
- BBS articles are assigned for the final paper

## Schedule

- Last Week
  - Inference in Bayes Net
  - Metaphor understanding using KARMA
- This Week
  - Formal Grammar and Parsing
  - Construction Grammar, ECG
- Next Week
  - Psychological model of sentence processing
  - Grammar Learning

## Questions

- What is top-down parsing? Using a plausible CFG grammar, what is the top down parse of "Pat ate the kiwi"?
- How well can CFGs represent English? What are some mechanisms for improvement?
- What are constructions?
- How does ECG use constructions?

### Grammar

- A grammar is a set of rules defining a formal language
- an example is right-regular grammar
- a more common example is Context-Free Grammar

$$\alpha \rightarrow \beta$$

 $\forall \ \alpha$ : single non-terminal

• B: any combination of terminals and non-terminals

```
S \rightarrow NP \ VP
NP \rightarrow Det \ Noun \ | \ Proper \ Noun
VP \rightarrow Verb \ NP \ | \ Verb \ PP
PP \rightarrow Preposition \ NP
```

Noun 
$$\rightarrow$$
 kiwi | orange | store  
ProperNoun  $\rightarrow$  Pat | I  
Det  $\rightarrow$  a | an | the  
Verb  $\rightarrow$  ate | went | shop  
Preposition  $\rightarrow$  to | at

## Top Down Parsing: Pat ate the kiwi

- start from S and apply all applicable rules
- forward search (use your favorite search algorithm...)



 $S \rightarrow NP \ VP$   $NP \rightarrow Det \ Noun \ | \ Proper \ Noun$   $VP \rightarrow Verb \ NP \ | \ Verb \ PP$   $PP \rightarrow Preposition \ NP$   $Noun \rightarrow kiwi \ | \ orange \ | \ store$   $Proper \ Noun \rightarrow Pat \ | \ I$   $Det \rightarrow a \ | \ an \ | \ the$   $Verb \rightarrow ate \ | \ went \ | \ shop$   $Preposition \rightarrow to \ | \ at$ 

succeed when you encounter

Pat ate the kiwi
in a state without any non-terminals

## Bottom Up Parsing: Pat ate the kiwi

- start from the sentence and try to match non-teriminals to it
- backward search (use your favorite search algorithm...)

```
S
 NP VP
   NP Verb NP
     NP Verb Det Noun
         NP Verb Det kiwi
            NP Verb the kiwi
                  NP ate the kiwi
                       ProperNoun ate the kiwi
                               Pat ate the kiwi
```

 $S \rightarrow NP \ VP$   $NP \rightarrow Det \ Noun \ | \ Proper \ Noun$   $VP \rightarrow Verb \ NP \ | \ Verb \ PP$   $PP \rightarrow Preposition \ NP$   $Noun \rightarrow kiwi \ | \ orange \ | \ store$   $Proper \ Noun \rightarrow Pat \ | \ I$   $Det \rightarrow a \ | \ an \ | \ the$   $Verb \rightarrow ate \ | \ went \ | \ shop$   $Preposition \rightarrow to \ | \ at$ 

S in a state by itself

## Questions

- What is top-down parsing? Using a plausible CFG grammar, what is the top down parse of "Harry likes the cafe"?
- How well can CFGs represent English? What are some mechanisms for improvement?
- What are constructions?
- How does ECG use constructions?

# Notice the ungrammatical and/or odd sentences that we can generate?

```
S \rightarrow NP VP
NP \rightarrow Det Noun | ProperNoun
VP \rightarrow Verb NP | Verb PP
PP \rightarrow Preposition NP
```

```
Noun → kiwi | orange | store

ProperNoun → Pat | I

Det → a | an | the

Verb → ate | went | shop

Preposition → to | at
```

- \*Pat ate a orange
- \*Pat shop at the store
- \*Pat went a store
- ? Pat ate a store
- ? The kiwi went to an orange

need to capture agreement, subcategorization, etc

you could make many versions of verbs, nouns, dets

→ cumbersome

## **Unification Grammar**

 Basic idea: capture these agreement features for each nonterminal in feature structures



Enforce constraints on these features using unification rules

 $S \rightarrow NP VP$   $NP.agreement \leftrightarrow VP.agreement$ 

## Questions

- What is top-down parsing? Using a plausible CFG grammar, what is the top down parse of "Harry likes the cafe"?
- How well can CFGs represent English? What are some mechanisms for improvement?
- What are constructions?
- How does ECG use constructions?

### Embodied constructions





#### **ECG** Notation

construction HARRY

form: /hEriy/

meaning: Harry

construction CAFE

form: /khaefej/

meaning : Cafe

Constructions have **form** and **meaning** poles that are subject to type constraints.

## Questions

- 1. What is top-down parsing? Using a plausible CFG grammar, what is the top down parse of "Harry likes the cafe"?
- 2. How well can CFGs represent English? What are some mechanisms for improvement?
- 3. What are constructions?
- How does ECG use constructions?

# A schema hierarchy of objects (Nomi)

schema Entity

schema Place

schema Object subcase of Entity

schema Referent
subcase of Entity
roles
category
distribution
boundedness
number
gender
accessibility
resolved-ref

schema Physical-Object subcase of Object, Place

schema Animate
subcase of Physical-Object
roles
animacy
constraints ✓ slot filler
animacy ← true

schema Manipulable-Object subcase of Physical-Object

schema Cup subcase of Manipulable-Object schema Human subcase of Animate roles sex

schema Nomi subcase of Human sex ← female

schema Toy subcase of Manipulable-Object

schema Ball subcase of Toy

## The schemas we just defined



# A schema hierarchy of actions (Nomi)

```
schema Action
roles type constraint
agent : Entity
```

schema DirectedAction
subcase of Action
roles
patient : Entity

schema Move
subcase of Action
roles
mover : Entity
direction : Place

```
schema CauseMove
subcase of DirectedAction, Move
roles
causer: Human
mover: Physical-Object
motion: Move
constraints
identification
constraint
motion.mover 
motion.agent 
causer
motion.direction 
agent 
causer
patient 
mover
```

# The schemas we just defined



# Constructions, finally (Nomi)

```
construction Ref-Expr
form : Schematic-Form
meaning : Referent
```

```
construction Nomi-Cn
level 0
subcase of Ref-Expr
form: Word
self.f.orth ← "Nomi"
meaning
evokes Nomi as n
self.m.category ↔ n
self.m.resolved-ref ↔ n
```

fancy way of saying that the category of the referent is Nomi

```
construction Cup-Cn
level 0
subcase of Ref-Expr
form: Word
self.f.orth ← "cup"
meaning
evokes Cup as n
self.m.category ↔ n
self.m.resolved-ref ↔ n
```

# Constructions, finally (Nomi)

construction Motion-Verb meaning : Move

construction Cause-Motion-Verb subcase of Motion-Verb meaning : CauseMove

construction Get-Cn level 0 subcase of Cause-Motion-Verb form : Word self.f.orth ← "get"

lexical construction

# Constructions, finally (Nomi)

```
construction Transitive-Cn
  level 2
  constructional
                         smaller constructions that it takes
    constituents
      agt: Ref-Expr
      v: Cause-Motion-Verb
      obj : Ref-Expr
                         ordering constraints on the constituents
  form
    agt.f before v.f
    v.f before obj.f
  meaning
    v.m.agent \leftrightarrow agt.m.resolved-ref
    v.m.patient \leftrightarrow obj.m.resolved-ref
```

# Traditional Levels of Analysis

Pragmatics Semantics Syntax Morphology Phonetics