CS 182 Sections 103 - 104

slide credit to
Eva Mok and Joe Makin
Updated by Leon Barrett
April 25, 2007

Announcements

- a9 due Tuesday, May 1st, in class
- final exam Tuesday May 8th in class
- final paper due Friday May 11th, 11:59pm
- final review sometime next week

Schedule

- Last Week
 - Constructions, ECG
- This Week
 - Models of language learning
 - Embodied Construction Grammar learning
- Next Week
 - Open lecture
 - Wrap-Up

- 1. Why is learning language difficult?
- 2. What are the "paucity of the stimulus" and the "opulence of the substrate"?
- 3. What is Gold's Theorem?
- 4. How does the analyzer use the constructions to parse a sentence?
- 5. How can we learn new ECG constructions?
- 6. What are ways to re-organize and consolidate the current grammar?
- 7. What metric is used to determine when to form a new construction?

Difficulty of learning language

- What makes learning language difficult?
 - How many sentences do children hear?
 - How often are those sentences even correct?
 - Even when they're correct, how often are they complete?
 - How often are they corrected when saying something wrong?
 - How many possible languages are there?

Larger context

- War!
 - Is language innate?
 - Covered in book

- 1. Why is learning language difficult?
- 2. What are the "paucity of the stimulus" and the "opulence of the substrate"?
- 3. What is Gold's Theorem?
- 4. How does the analyzer use the constructions to parse a sentence?
- 5. How can we learn new ECG constructions?
- 6. What are ways to re-organize and consolidate the current grammar?
- 7. What metric is used to determine when to form a new construction?

Paucity and Opulence

- Poverty of the stimulus
 - Coined to suggest how little information children have to learn from
- Opulence of the substrate
 - Opulence = "richness"
 - Coined in response to suggest how much background information children have

- 1. Why is learning language difficult?
- 2. What are the "paucity of the stimulus" and the "opulence of the substrate"?
- 3. What is Gold's Theorem?
- 4. How does the analyzer use the constructions to parse a sentence?
- 5. How can we learn new ECG constructions?
- 6. What are ways to re-organize and consolidate the current grammar?
- 7. What metric is used to determine when to form a new construction?

Gold's Theorem

- Suppose that you have an infinite number of languages
 - language = "set of legal sentences"
- Suppose that for every language Ln, there is a bigger language Ln+1
 - makes every sentence, and then some
- There's some language Linfinity
 - contains all the sentences in all other grammars
- You can arrange data so that no one ever learns
 Linfinity
 - http://www.lps.uci.edu/~johnsonk/Publications/Johnson.GoldsTheorem.pdf

- 1. Why is learning language difficult?
- 2. What are the "paucity of the stimulus" and the "opulence of the substrate"?
- 3. What is Gold's Theorem?
- 4. How does the analyzer use the constructions to parse a sentence?
- 5. How can we learn new ECG constructions?
- 6. What are ways to re-organize and consolidate the current grammar?
- 7. What metric is used to determine when to form a new construction?

Analyzing "You Throw The Ball"

FORM (sound) MEANING (stuff) Throwert2 thrower ↔ t1 t1 before t2 Throw-Object t2 before t3 $t2.throwee \leftrightarrow t3$ Actoberses Act diressee you "you" subcase of Human **Schrem**a Throw rol**es**cower throw "throw" throwee throwee "the" Battlema Ball ball "ball" subcase of Object schema Block block "block" subcase of Object

Another way to think of the SemSpec

Analyzing in ECG

```
create a recognizer for each construction in the grammar for each level j (in ascending order)
repeat
for each recognizer r in j
for each position p of utterance
initiate r starting at p
until we don't find anything new
```

Recognizer for the Transitive-Cn

- an example of a level-1 construction is Red-Ball-Cn
- each recognizer looks for its constituents in order (the ordering constraints on the constituents can be a partial ordering)

Learning-Analysis Cycle (Chang, 2004)

- 1. Learner passes input (Utterance + Situation) and current grammar to Analyzer.
- 2. Analyzer produces SemSpec and Constructional Analysis.
- 1. Learner updates grammar:
 - a. Hypothesize new map.
 - b. Reorganize grammar (merge or compose).
 - c. Reinforce (based on usage).

- 1. Why is learning language difficult?
- 2. What are the "paucity of the stimulus" and the "opulence of the substrate"?
- 3. What is Gold's Theorem?
- 4. How does the analyzer use the constructions to parse a sentence?
- 5. How can we learn new ECG constructions?
- 6. What are ways to re-organize and consolidate the current grammar?
- 7. What metric is used to determine when to form a new construction?

Usage-based Language Learning

Basic Learning Idea

- The learner's current grammar produces a certain analysis for an input sentence
- The context contains richer information (e.g. bindings) that are unaccounted for in the analysis
- Find a way to account for these meaning relations (by looking for corresponding form relations)

Initial Single-Word Stage

New Data: "You Throw The Ball"

Relational Mapping Scenarios

throw ball throw.throwee ↔ ball

Nomi ball

possession.possessor \leftrightarrow Nomi possession.possessed \leftrightarrow ball

- 1. Why is learning language difficult?
- 2. What are the "paucity of the stimulus" and the "opulence of the substrate"?
- 3. What is Gold's Theorem?
- 4. How does the analyzer use the constructions to parse a sentence?
- 5. How can we learn new ECG constructions?
- 6. What are ways to re-organize and consolidate the current grammar?
- 7. What metric is used to determine when to form a new construction?

Merging Similar Constructions

Resulting Construction

```
construction THROW-OBJECT constructional constituents
```

t: THROW

o: OBJECT

form

 \mathbf{t}_f before \mathbf{o}_f

meaning

 t_m .throwee $\leftrightarrow o_m$

Composing Co-occurring Constructions

Resulting Construction

```
construction THROW-BALL-
OFF
 constructional
   constituents
    t: THROW
    b: BALL
    o: OFF
 form
  \mathbf{t}_f before \mathbf{b}_f
   \mathbf{b}_f before \mathbf{o}_f
 meaning
   evokes MOTION as m
   t_m.throwee \leftrightarrow b_m
```

--- --- l

- 1. Why is learning language difficult?
- 2. What are the "paucity of the stimulus" and the "opulence of the substrate"?
- 3. What is Gold's Theorem?
- 4. How does the analyzer use the constructions to parse a sentence?
- 5. How can we learn new ECG constructions?
- 6. What are ways to re-organize and consolidate the current grammar?
- 7. What metric is used to determine when to form a new construction?

Minimum Description Length

- Choose grammar G to minimize cost(G|D):
 - $cost(G|D) = \alpha \cdot size(G) + \beta \cdot complexity(D|G)$
 - Approximates Bayesian learning;
 cost(G|D) ≈ 1/posterior probability ≈ 1/P(G|D)
- Size of grammar = size(G) ≈ 1/prior ≈ 1/P(G)
 - favor fewer/smaller constructions/roles; isomorphic mappings
- Complexity of data given grammar ≈ 1/likelihood
 ≈ 1/P(D|G)
 - favor simpler analyses
 (fewer, more likely constructions)
 - based on derivation length + score of derivation

Size Of Grammar

• Size of the grammar G is the sum of the size of each construction:

$$size(G) = \sum size(c)$$

• Size of each construction c is: $\overline{c \in G}$

where
$$\operatorname{size}(c) = n_c + m_c + \sum \operatorname{length}(e)$$

- n_c = number of constituents in $c, e \in c$
- m_c = number of constraints in c,
- length(e) = slot chain length of element reference e

Example: The Throw-Ball Cxn

construction THROW-BALL constructional

constituents

t: THROW

b: BALL

form

 \mathbf{t}_f before \mathbf{b}_f

meaning

 t_m .throwee $\leftrightarrow b_m$

$$size(c) = n_c + m_c + \sum_{e \in c} length(e)$$

Complexity of Data Given Grammar

 Complexity of the data D given grammar G is the sum of the analysis score of each input token d:

complexity(
$$D \mid G$$
) = $\sum_{d \in D}$ score(d)

• Analysis score of each input token *d* is:

$$score(d) = \sum_{c \in d} \left(weight_c + \eta \cdot \sum_{r \in c} |type_r| \right) + height_d + semfit_d$$
where

- c is a construction used in the analysis of d
- weight_c ≈ relative frequency of c,
- $|type_r|$ = number of ontology items of type r used,
- *height*_d = height of the derivation graph,
- *semfit*_d = semantic fit provide by the analyzer

Final Remark

- The goal here is to build a cognitive plausible model of language learning
- A very different game that one could play is unsupervised / semi-supervised language learning using shallow or no semantics
 - statistical NLP
 - automatic extraction of syntactic structure
 - automatic labeling of frame elements
- Fairly reasonable results for use in tasks such as information retrieval, but the semantic representation is very shallow