

# Federated Learning, Diff Privacy, and Generative Models

Sean Augenstein saugenst@google.com

Presenting the work of many

...federated learning!

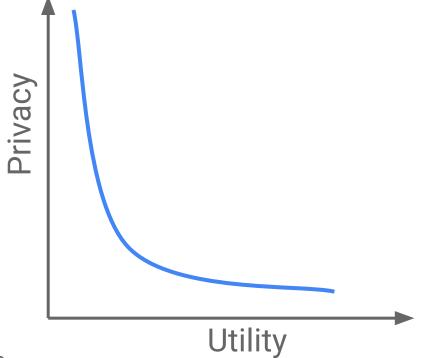
g.co/federated

UC Berkeley 2019.09.26

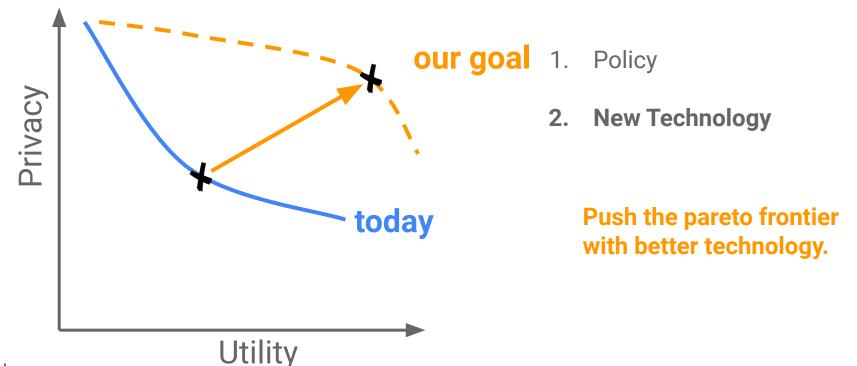
## Context



## ML on Sensitive Data: Privacy versus Utility



### ML on Sensitive Data: Privacy versus Utility (?)



## Why federated learning?



## Data is born at the edge

Billions of phones & IoT devices constantly generate data

Data enables better products and smarter models





## Can data live at the edge?

Data processing is moving on device:

- Improved latency
- Works offline
- Better battery life
- Privacy advantages

E.g., on-device inference for mobile keyboards and cameras.







## Can data live at the edge?

Data processing is moving on device:

- Improved latency
- Works offline
- Better battery life
- Privacy advantages

E.g., on-device inference for mobile keyboards and cameras.

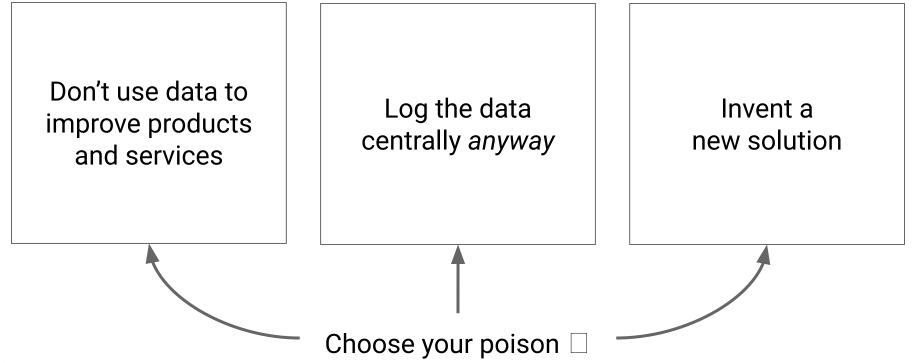
What about analytics? What about learning?



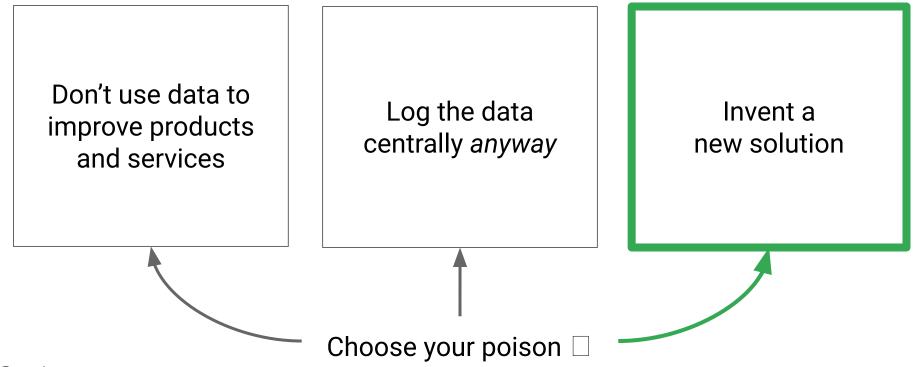




## 2014: Three choices



## 2014: Three choices



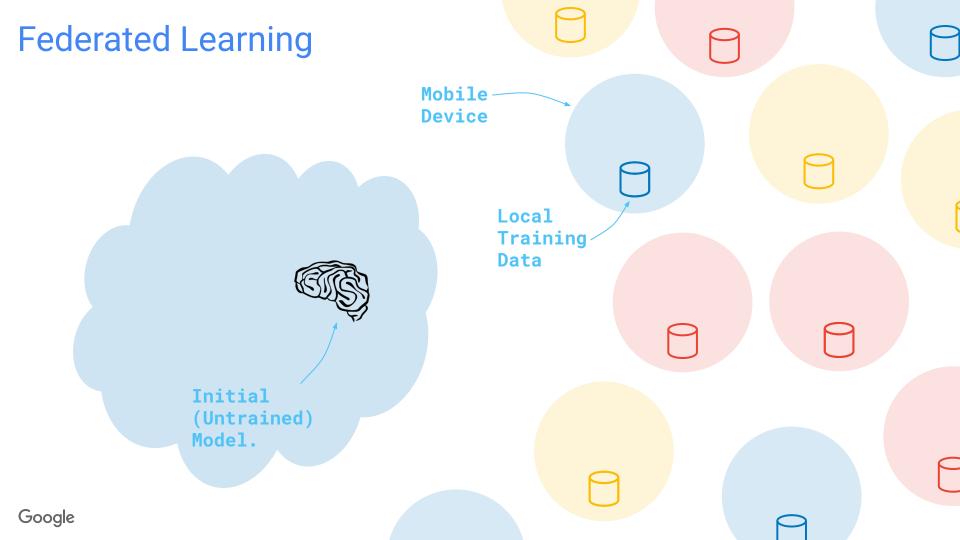
### 2019: Good reason to hope

Don't use data to improve products and services

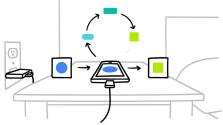
Log the data centrally *anyway* 

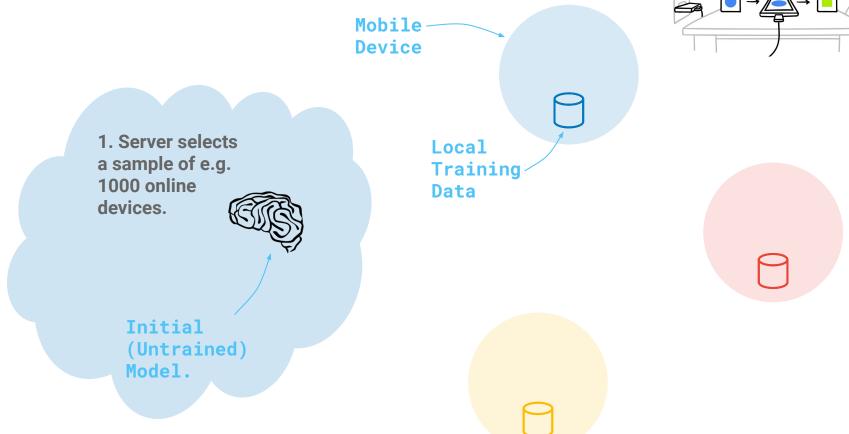
## Federated learning and analytics

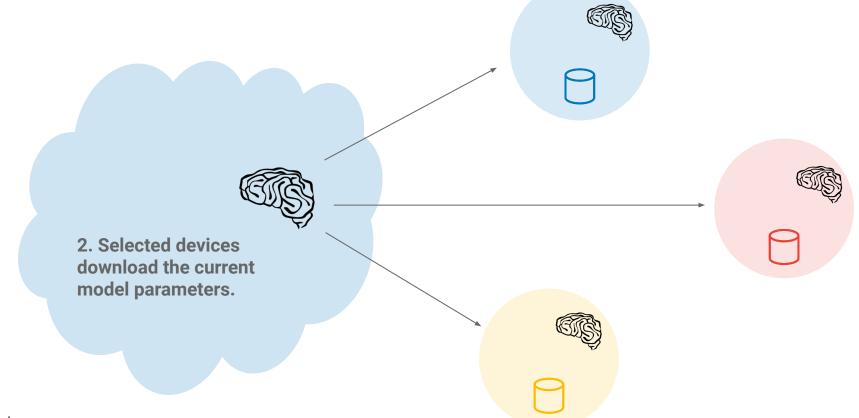










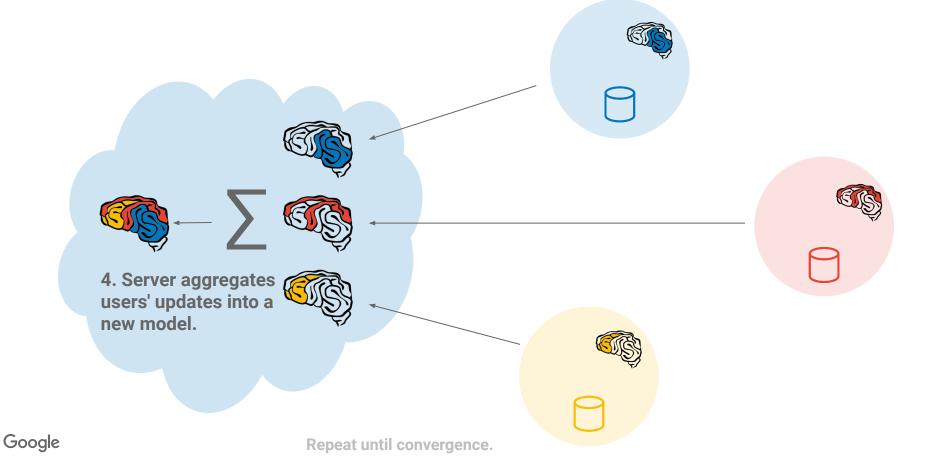




3. Users compute an update using local training data







4. Server aggregates users' updates into a new model.



Data flowing back to server are model parameters, NOT raw input data

Composable with strong privacy guarantees, which we'll describe in a bit

Google

Repeat until convergence.

## The Final Model is Deployed For Inference

Deploy the best model to all devices (millions).







C

## The Federated Averaging algorithm

#### Server

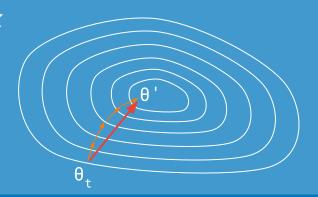
- **Until Converged:** 1. Select a random subset of clients
- 2. In parallel, send current parameters  $\boldsymbol{\theta}_{t}$  to those clients

#### Selected Client k

- 1. Receive  $\theta_{t}$  from server.
- 2. Run some number of minibatch SGD steps, producing  $\theta^{\,\prime}$
- 3. Return  $\theta' \theta_+$  to server.



H. B. McMahan, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTATS 2017

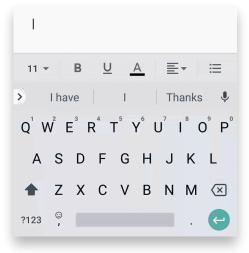


## Gboard: language modeling

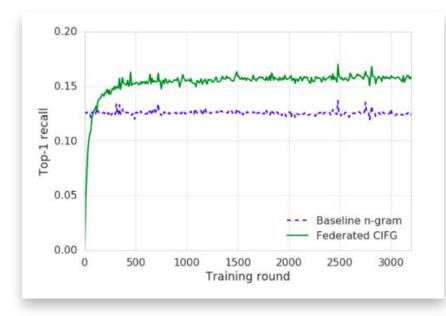
- Predict the next word based on typed text so far
- Powers the predictions strip

When should you consider federated learning?

- On-device data is more relevant than server-side proxy data
- On-device data is privacy sensitive or large
- Labels can be inferred naturally from user interaction



## Gboard: language modeling



## Federated model compared to baseline

A. Hard, et al. Federated Learning for Mobile Keyboard Prediction. arXiv:1811.03604

## Other federated models in Gboard



#### **Emoji prediction**

- 7% more accurate emoji predictions
- prediction strip clicks +4% more
- 11% more users share emojis!

Ramaswamy, et al. Federated Learning for Emoji Prediction in a Mobile Keyboard. arXiv:1906.04329.

#### **Action prediction**

When is it useful to suggest a gif, sticker, or search query?

- 47% reduction in unhelpful suggestions
- increasing overall emoji, gif, and sticker shares

T. Yang, et al. Applied Federated Learning: Improving Google Keyboard Query Suggestions. arXiv:1812.02903

#### Discovering new words

Federated discovery of what words people are typing that Gboard doesn't know.

M. Chen, et al. Federated Learning Of Out-Of-Vocabulary Words. arXiv:1903.10635

## Is federated computation just distributed computing?

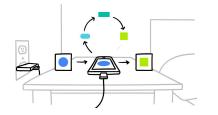
## Semi-cyclic data availability

Each device reflects one users data.

So no one device is representative of the whole population.

Devices must idle, plugged-in, on wi-fi to participate.

Device availability correlates with both geo location *and* data distribution.

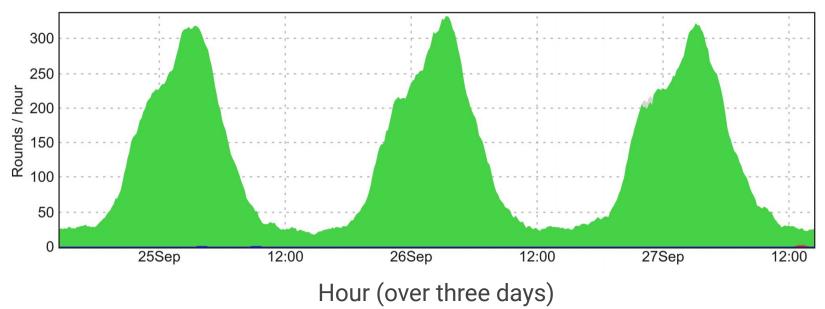


Google

H. Eichner, et al. Semi-Cyclic Stochastic Gradient Descent. *ICML 2019*.



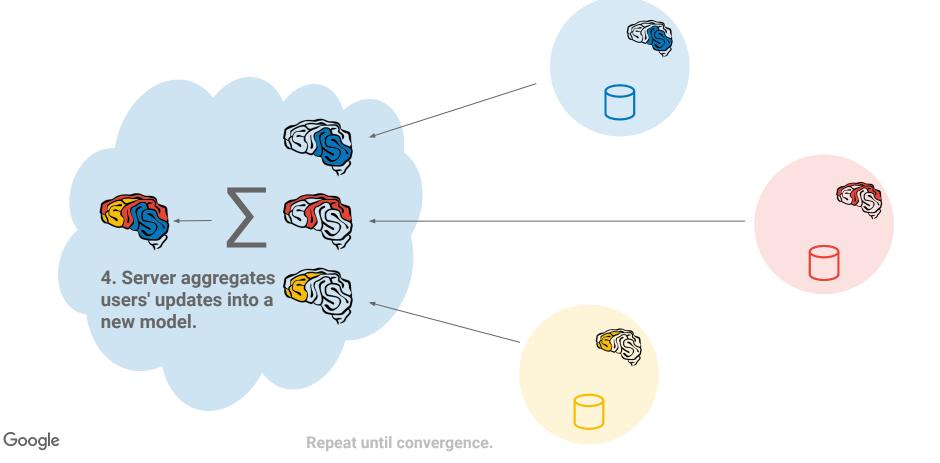
#### Round completion rate by hour (US)



- Rounds complete faster when more devices available
- Device availability changes over the course of a day

## FL and Privacy





Might these updates contain privacy-sensitive data?





E S

- 1. Ephemeral I
- 2. Focused

Improve privacy &
 security by
 minimizing the
 "attack surface"

**Might these** updates contain privacy-sensitive data?

E C

- 1. Ephemeral
- 2. Focused
- 3. Only in aggregate

## Secure Aggregation

Each contribution looks random on its own...

but paired "antiparticles" cancel out when summed.

T

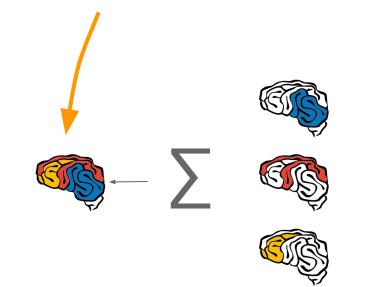
- A practical protocol with
  - Security guarantees
  - Communication efficiency
  - Dropout tolerance

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, K. Seth. **Practical Secure Aggregation for Privacy-Preserving Machine Learning.** *CCS 2017*.

Bob

Alice

Might the final model memorize a user's data? (e.g, B. McMahan's credit card #)

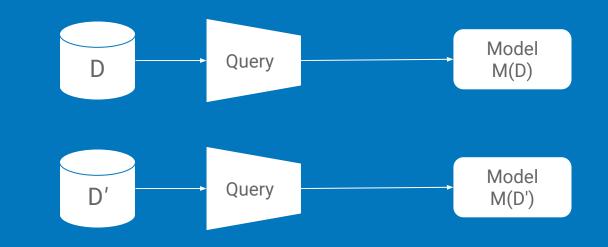


- 1. Ephemeral
- 2. Focused
- 3. Only in aggregate
- 4. Differentially private

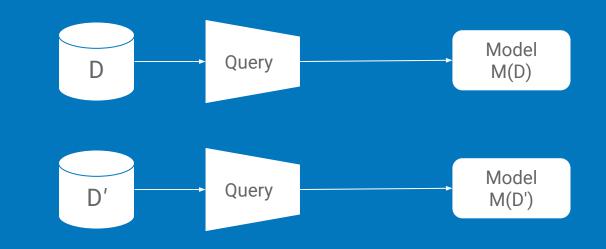


#### Differential privacy is the statistical science of trying to learn as much as possible about a group while learning as little as possible about any individual in it.



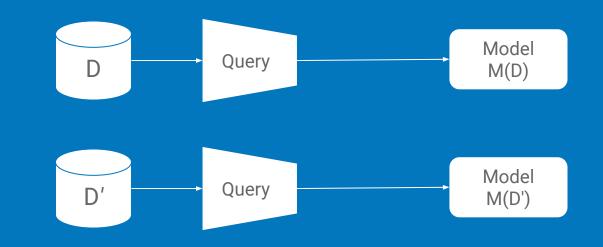


( $\varepsilon$ ,  $\delta$ )-**Differential Privacy**: The distribution of the output M(D) (a trained model) on database (training dataset) D is nearly the same as M(D') for all adjacent databases D and D'



( $\varepsilon$ ,  $\delta$ )-Differential Privacy: The distribution of the output M(D) (a trained model) on database (training dataset) D is **nearly the same** as M(D') for all adjacent databases D and D'

 $\forall S: \Pr[M(D) \in S] \le \exp(\varepsilon) \cdot \Pr[M(D') \in S] + \delta$ 

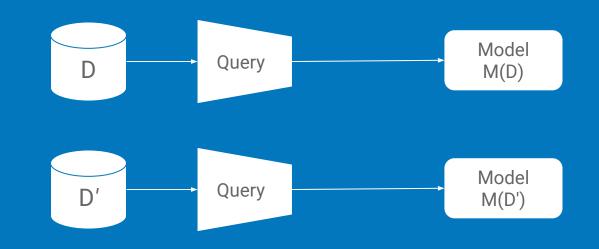


( $\varepsilon$ ,  $\delta$ )-**Differential Privacy**: The distribution of the output M(D) (a trained model) on database (training dataset) D is nearly the same as M(D') for all **adjacent** databases D and D'

**adjacent**: Sets D and D' differ only by presence/absence of one **example** 

M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, & L. Zhang. **Deep** Learning with Differential Privacy. CCS 2016.

Differential Privacy (in Federated Context)



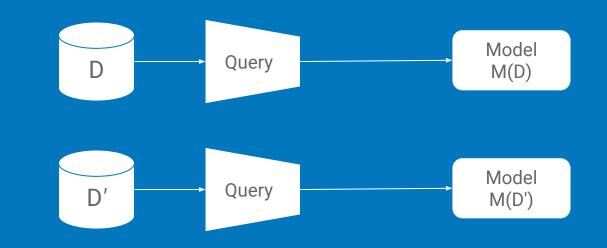
( $\varepsilon$ ,  $\delta$ )-**Differential Privacy**: The distribution of the output M(D) (a trained model) on database (training dataset) D is nearly the same as M(D') for all **adjacent** databases D and D'

adjacent: Sets D and D' differ only by presence/absence of one example user

H. B. McMahan, et al. Learning Differentially Private Recurrent Language Models. ICLR 2018.

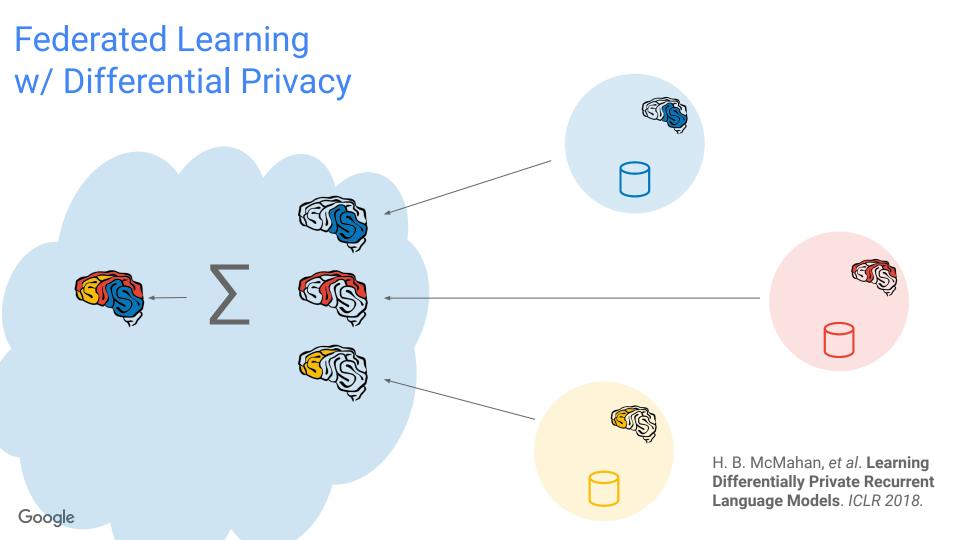
Google

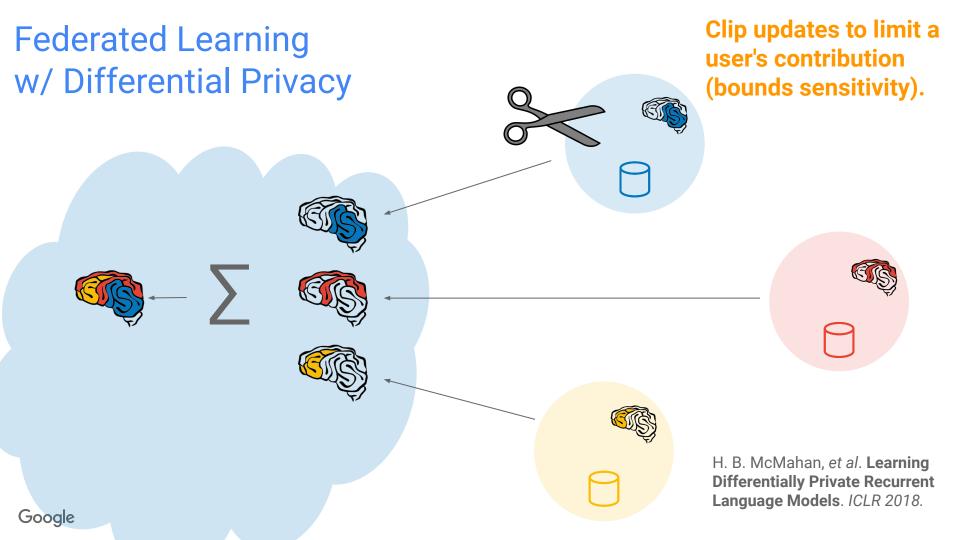
# Differential Privacy

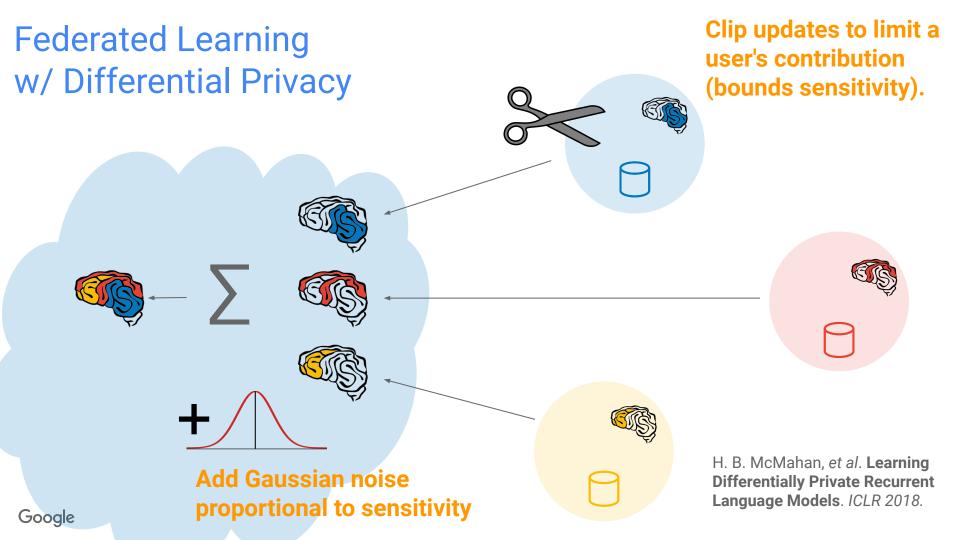


( $\varepsilon$ ,  $\delta$ )-**Differential Privacy**: The distribution of the output M(D) (a trained model) on database (training dataset) D is nearly the same as M(D') for all adjacent databases D and D'

Sensitivity: How much Query(D) and Query(D') differ







#### Server

Until Converged:

- Select each user independently with probability q, for say E[C]=1000 clients
- 2. In parallel, send current parameters  $\boldsymbol{\theta}_{t}$  to those clients

#### Selected Client k

```
1. Receive \theta_{+} from server.
```

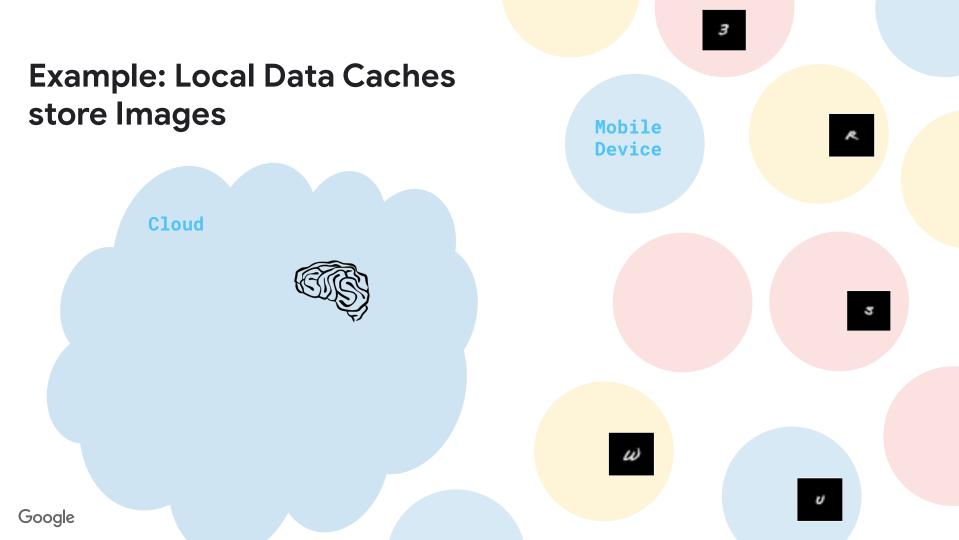
2. Run some number of minibatch SGD steps, producing  $\theta^{\,\prime}$ 

3. Return  $Clip(\theta' - \theta_{r})$  to server.

3.  $\theta_{t+1} = \theta_t + bounded sensitivity data-weighted average of client updates + Gaussian noise N(0, I\sigma^2)$ 

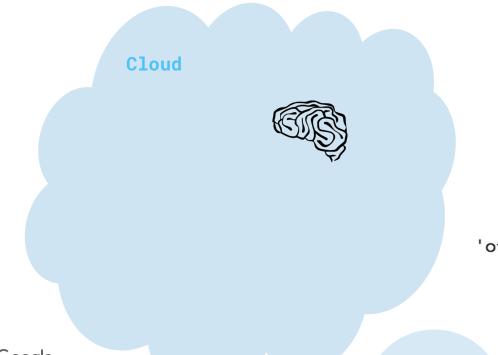
Challenges to private, decentralized learning/analytics



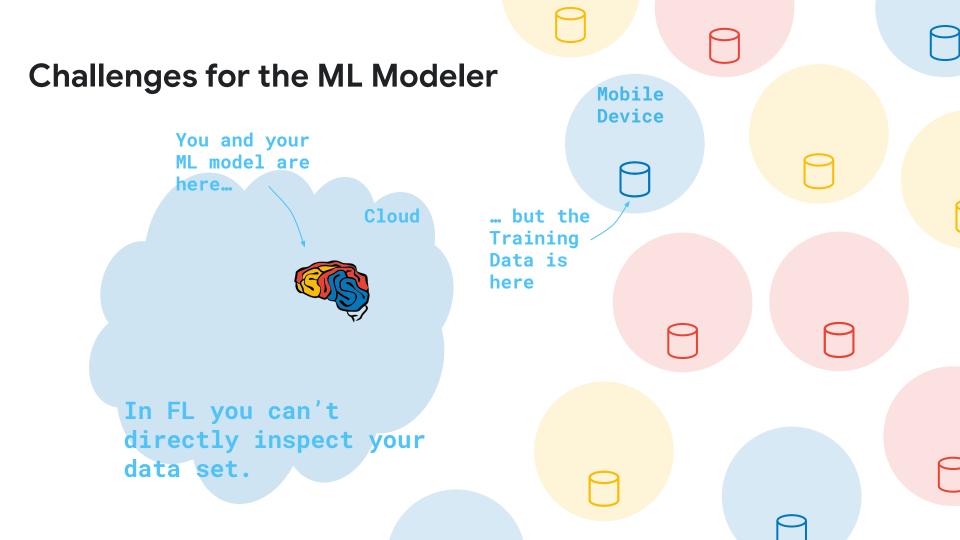


'halo', 'universe'

# Example: Local Data Caches store Text









# **Challenges for the ML Modeler : Debugging**

- "I'm observing metrics outside the expected range, why?", or ...
- "My trained model is behaving pathologically, why?"
  - Inspect image data set, realize there's a pixel range mismatch b/w examples and expected

$$x \in [0, 255]$$
 vs.  $x \in [-1.0, 1.0]$ 

• Inspect image data set, realize bug in preprocessing (some images have intensity inverted)



• Inspect text data set, realize bug in tokenizing (some tokens incorrectly concatenated)

['Ohthere', 'is', 'also', 'Gears', 'of', 'war', ',', 'other', 'character', 'in', 'the', 'halo', 'universe',

# Challenges for the ML Modeler : Data Set Augmentation

• "I need to gather input samples (features), to pass to humans to apply labels"

$$\begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix} \begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix}$$

• "I have a biased dataset, I need to gather samples of underrepresented classes"

$$\begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix} \begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix}$$

# Challenges for the ML Modeler : Data Set Augmentation

• "I need to gather input samples (features), to pass to humans to apply labels"

$$\begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix} \begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix}$$

• "I have a biased dataset, I need to gather samples of underrepresented classes"

$$\begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix} \begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix}$$

How do you do these types of things when you can't directly inspect the data?

# **Differentially Private, Federated Generate Models**



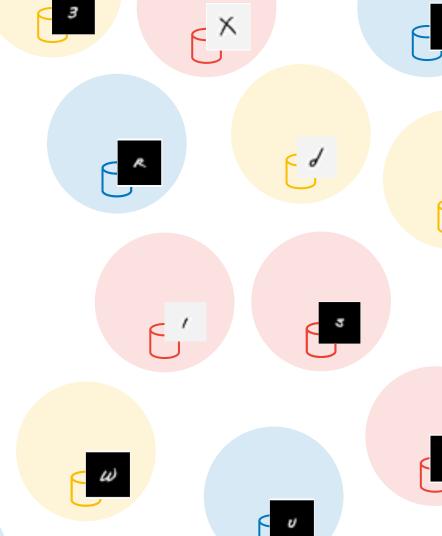
• Can we train via federation a model capable of synthesizing privatized, novel examples that match the distribution of the private, decentralized dataset?

- Privacy is paramount
  - A Federated Generative Model should not be able to memorize data unique to an individual

- Many options at our disposal:
  - Differentially Private, Federated GANs (for Image Applications)
  - Differentially Private, Federated Recurrent NNs (for Text Applications)
  - 0 ...

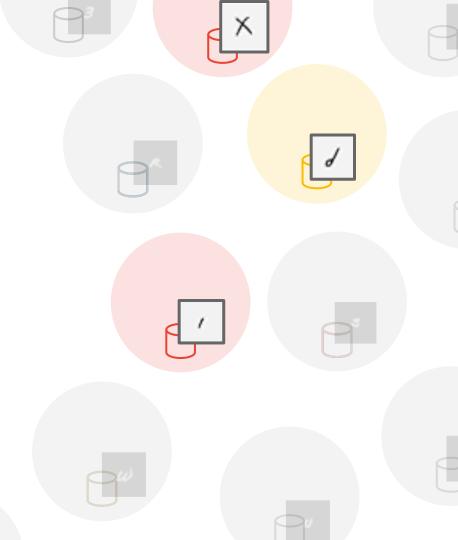
Take an image model debugging example...

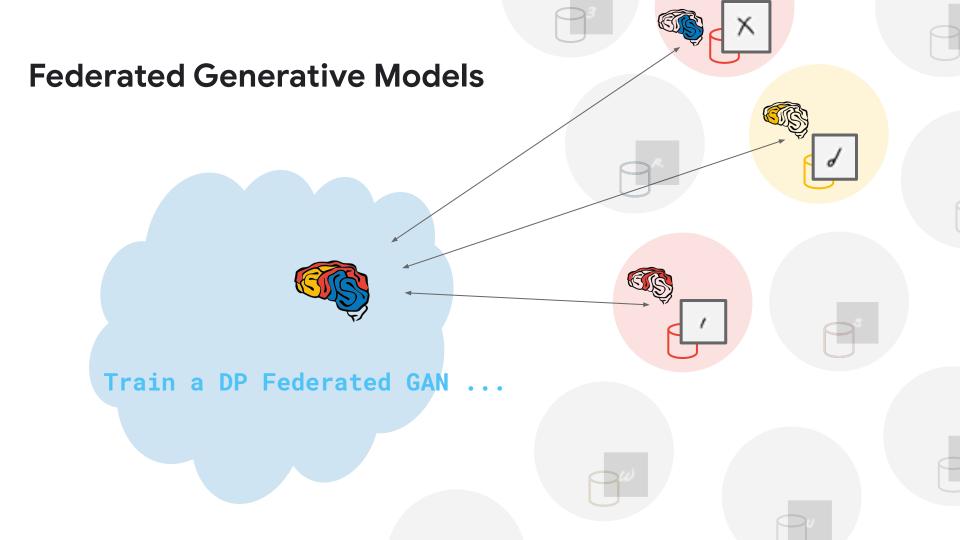


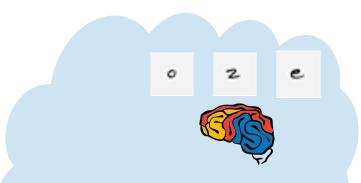




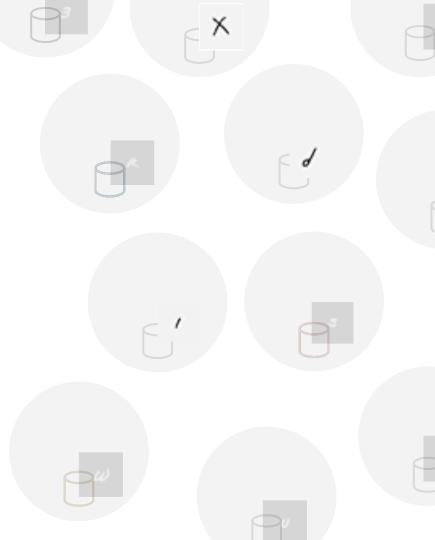
Add logic to gather samples in cases where metrics fall outside expectations

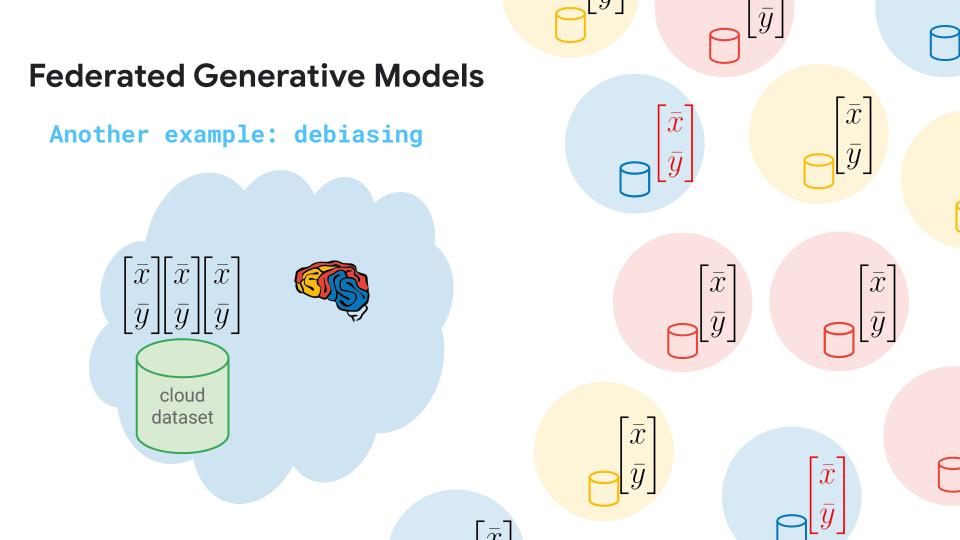


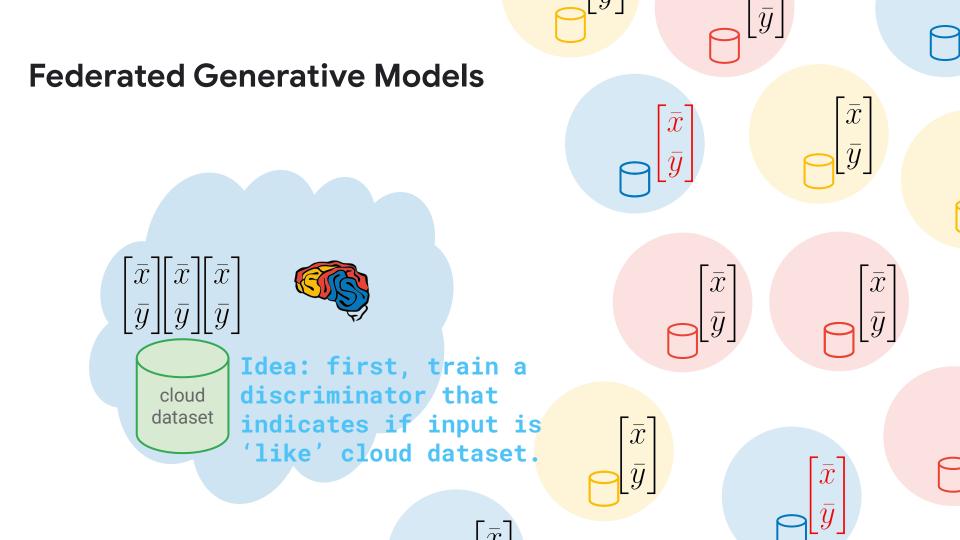


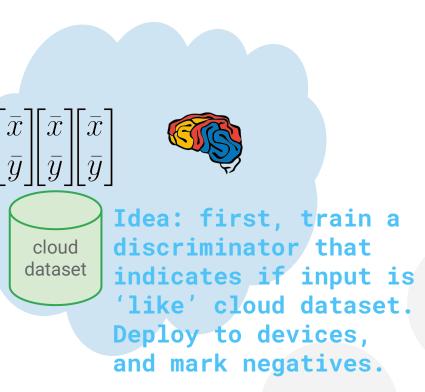


Train a DP Federated GAN and synthesize novel images (at the cloud) that match the characteristics of images in private dataset. Observe intensity inversion.







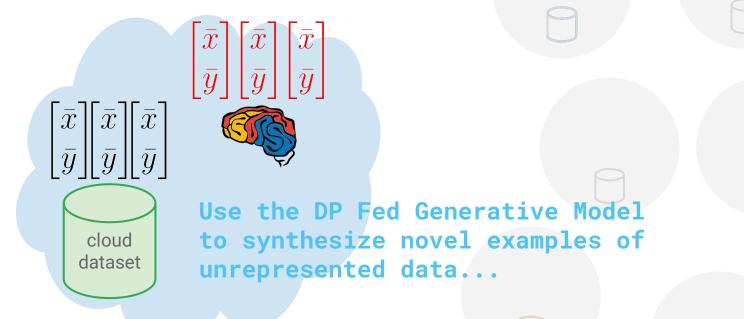


 $\mathbf{c}\begin{bmatrix} \bar{x}\\ \bar{y}\end{bmatrix}$ 

 $\bar{x}$ 

 $\bar{y}$ 

#### July S **Federated Generative Models** $\mathbf{J}$ $\bar{y}$ $\bar{x}$ $\bar{x}$ $\bar{x}$ $\bar{y}$ $\bar{y} \| \bar{y}$ Train a DP Fed **Generative Model** cloud dataset on samples of the unrepresented data $\bar{x}$ $\bar{y}$



 $\begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix} \begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix}$ 

cloud dataset ... and then developer uses synthesized examples to inform additional data collection, etc.

Final example: beyond self-labeling limitations



On-device experience generates feature 'x', but not the label 'y'

 $\lceil \bar{r} \rceil$ 

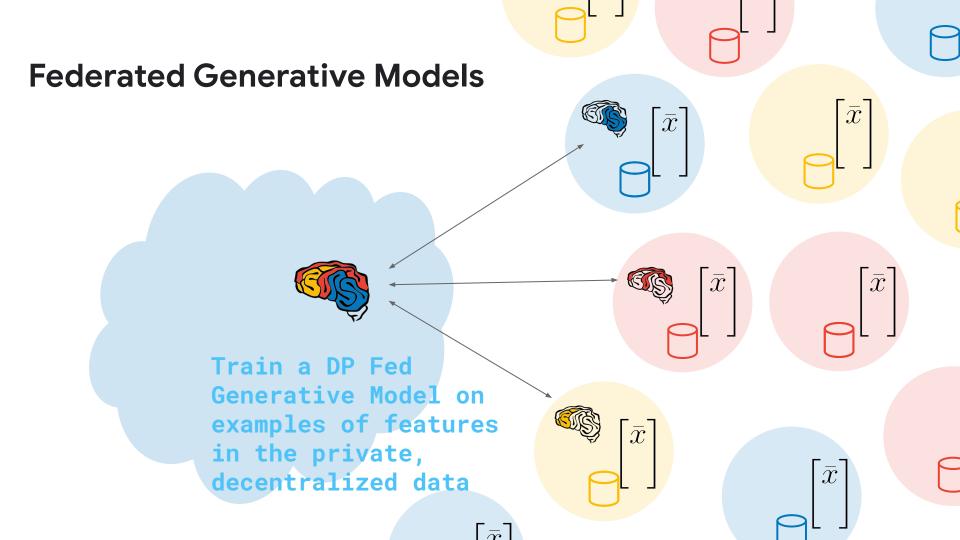
 $\bar{x}$ 

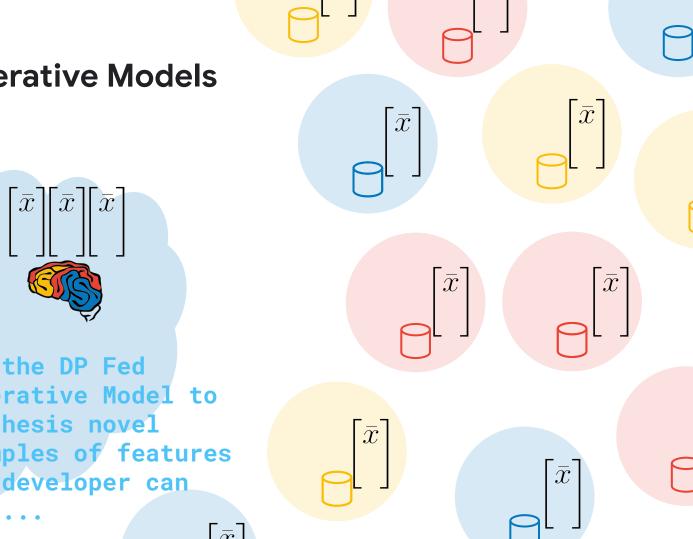
 $\bar{x}$ 

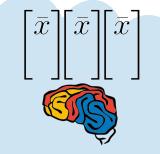
 $\bar{x}$ 

 $\bar{x}$ 

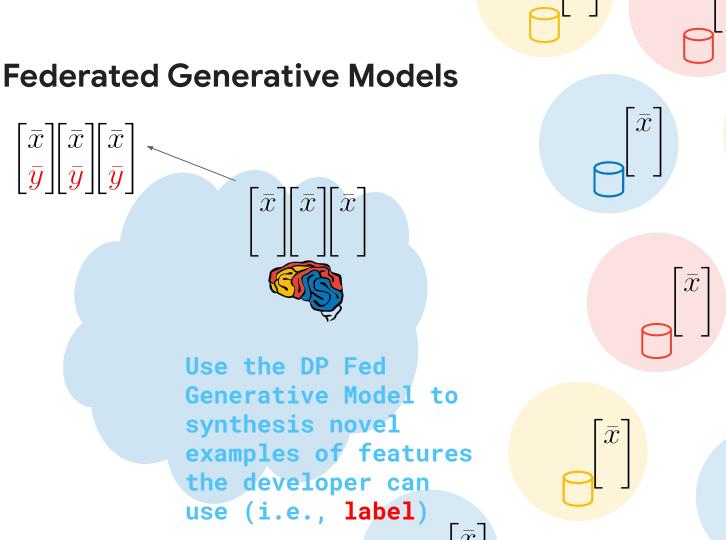








Use the DP Fed **Generative Model to** synthesis novel examples of features the developer can use

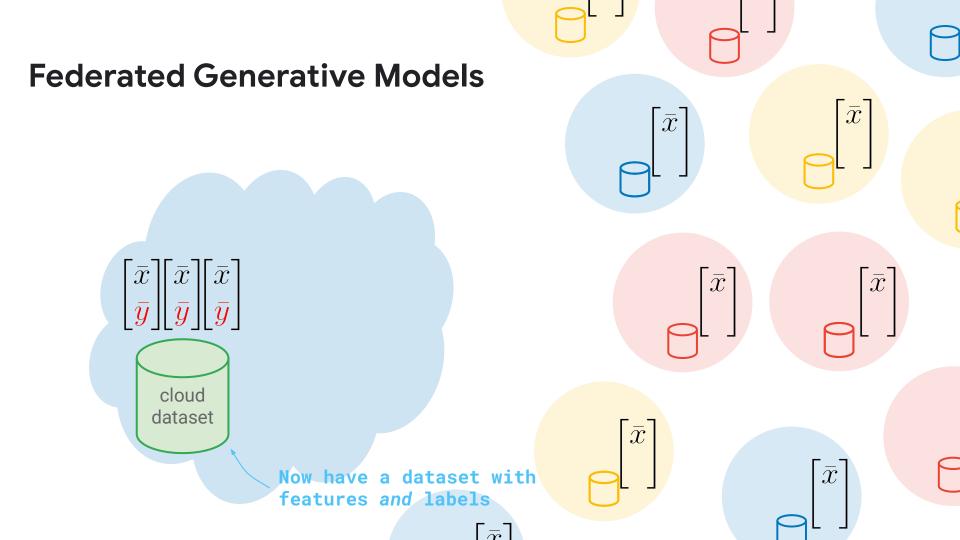


 $\bar{x}$  $\bar{x}$ 

 $\bar{x}$ 

 $\bar{x}$ 

 $\bar{x}$ 



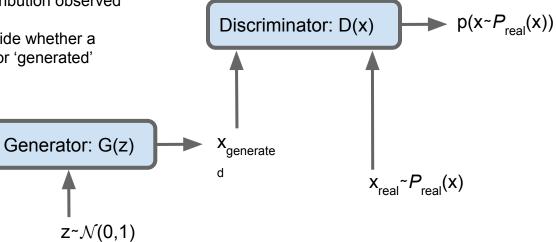
(Differentially Private) Federated GAN Algorithm

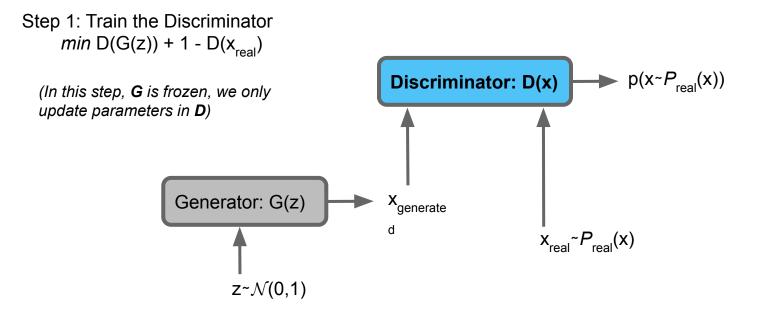


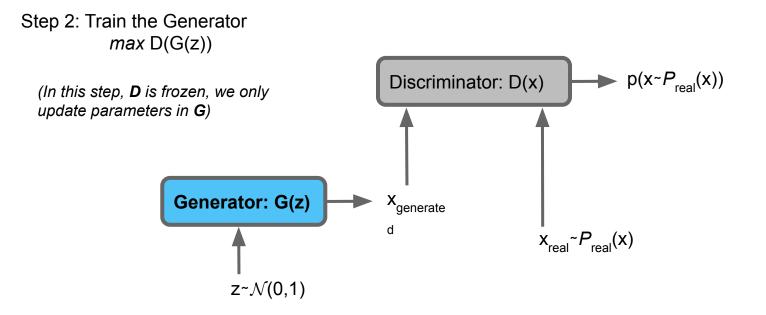
# Quick Review of GANs

Two distinct NNs...

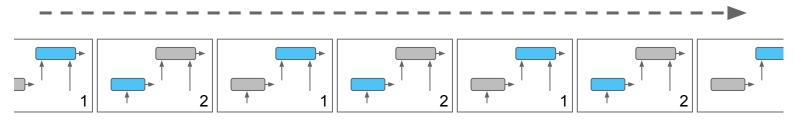
- 'G' tries to emit values that emulate a distribution observed in 'real' data
- 'D' tries to decide whether a value is 'real' or 'generated'





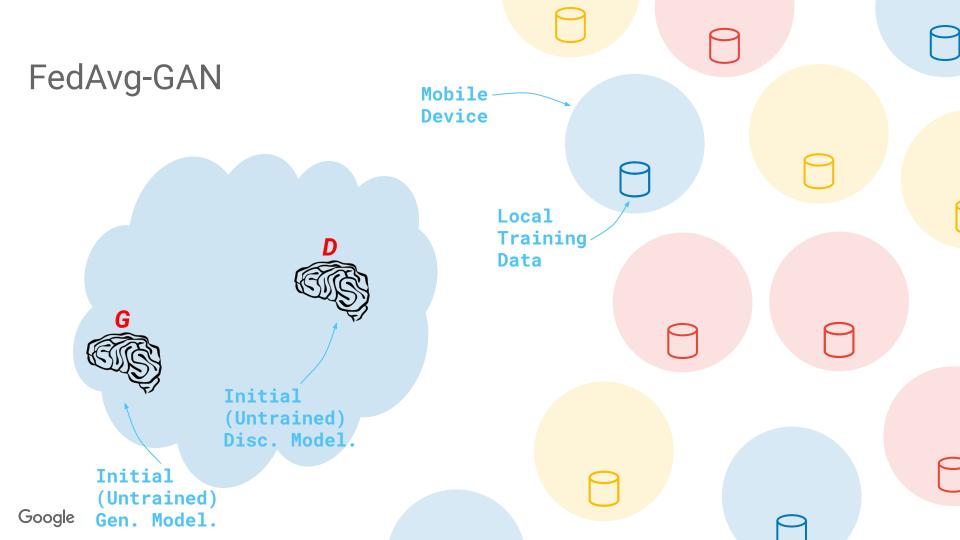


• Iteratively train the two NNs

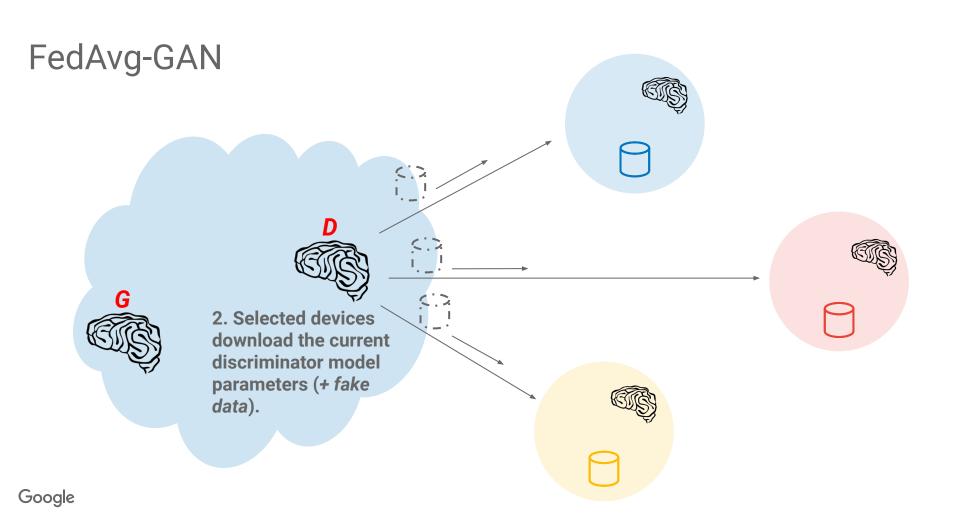


- At convergence, you've got a NN ('G') which can generate novel instances that emulate the real world
  - E.g., generate novel images of human faces

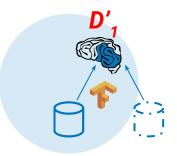




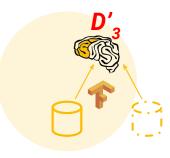


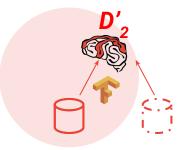




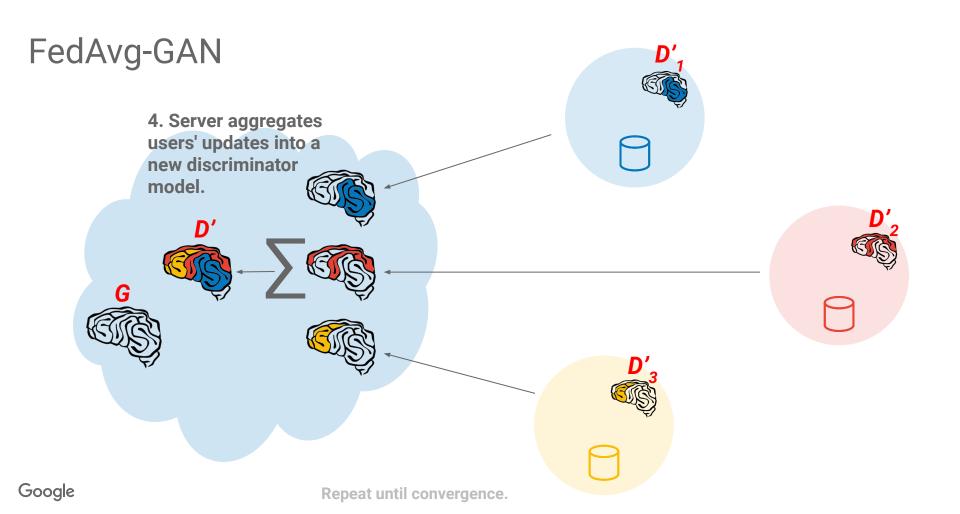


3. Users compute a discriminator update using local real training data (+ fake data)





Google

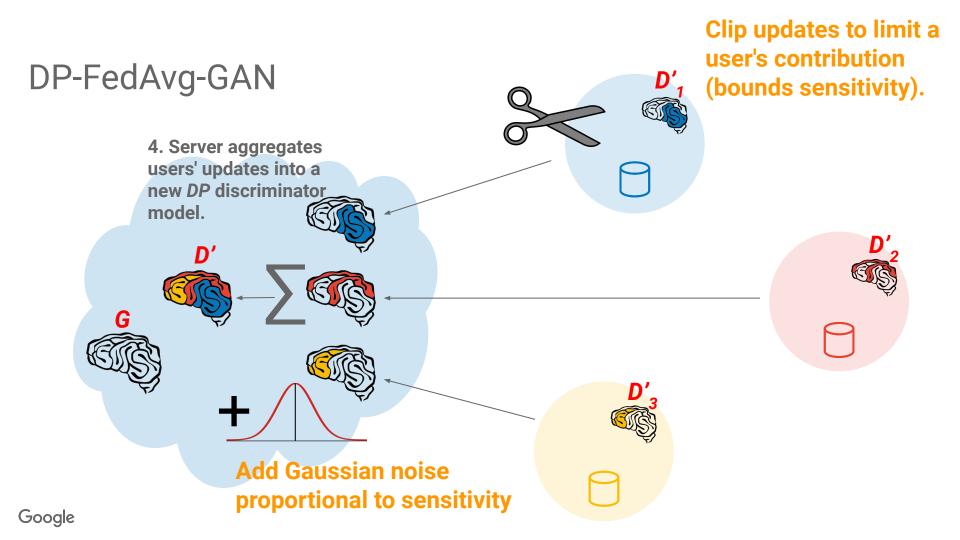




5. Server computes a generator update, using updated discriminator

G'





# **DP-FedAvg-GAN**

5. Server computes a generator update, using updated *DP* discriminator. Generator is also *DP*, via post-processing property

**G**'



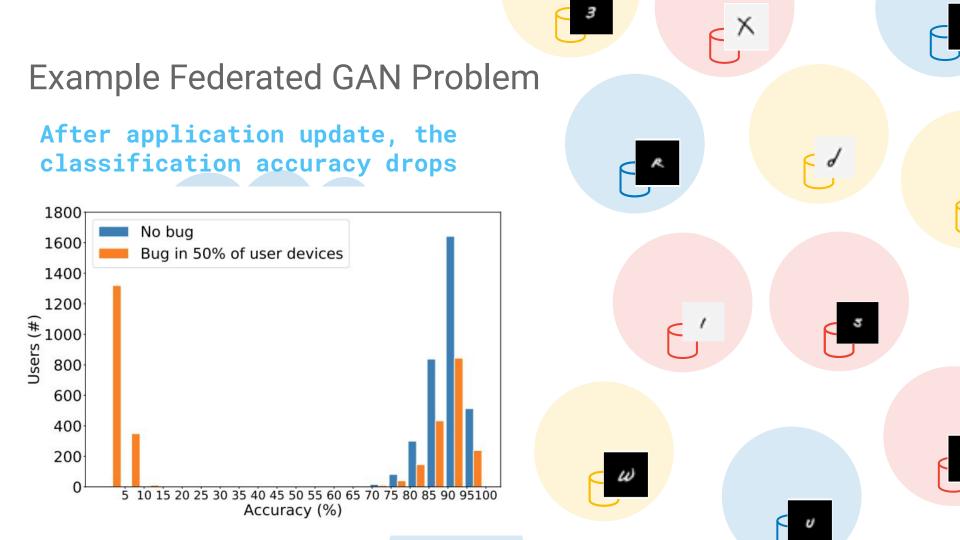
Federated GAN Example Problem: Debugging Image Classification



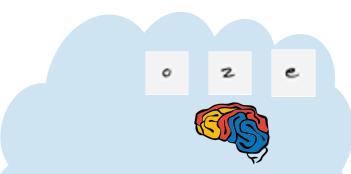
# **Example Federated GAN Problem**

R

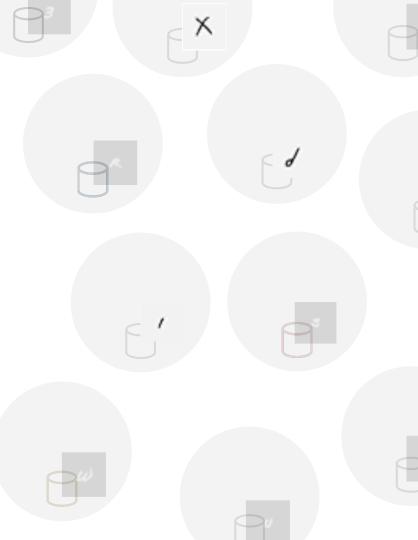
On-device inference network classifies handwritten numbers and letters. It expects raw images (from the upstream data pipeline) where background is black and character is white.



## **Example Federated GAN Problem**



Train a DP Federated GAN and synthesize novel images (at the cloud) that match the characteristics of images in private dataset. Do this both for subsets with high and low class. accuracy.



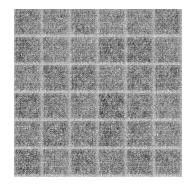
# **Example Federated GAN Results**

Population Description Sub-Population Description

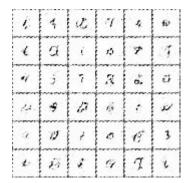
Devices where data classifies with 'low' accuracy Example of Real Data on Devices in Sub-Population



GAN after 0 rds



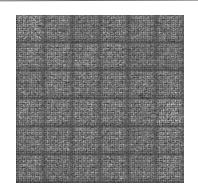
#### GAN after 1000 rds



EMNIST Dataset, 50% of Devices have their images 'flipped' (black<-> white)

Devices where data classifies with 'high' accuracy







Google

## **Example Federated GAN Results**

Example of Real Data on Devices in Sub-Population

Now the modeler can discern **this** difference ...

... indicating that

this is the problem

#### GAN after 1000 rds

| ķ   | 4  | 1. C | 11 | 4  | Ð |
|-----|----|------|----|----|---|
| 1   | a  | í    | 10 | 7  | 4 |
| •1  | ÷  | 7    | 8  | ó, | ð |
| 14. | ÷  | 17   | ø  | 1  | N |
| 9   | 11 | 1    | đ  | Ċ  | 3 |
| t   | 13 | 1    | 9  | 7  | r |

| 7   | a) | È | Ż | m  | 1.11 |
|-----|----|---|---|----|------|
| 3   | ь  | 1 | 7 | 3  | ß    |
|     | a  | 3 | 1 | ė, | 5    |
| · 8 | ł. | 7 | 9 | #  | ¥    |
| .,  | 4. | 0 | 9 | *  | 7    |
| 1   | Ĩ. | 4 | 2 | 1  | 3    |

W

# Conclusion



# **FL Research**



FL Workshop in Seattle 6/17-18

2016 8 academic papers
2017 135
2018 256
2019 265 so far ...

Multiple workshops and tutorials this year (CVPR, Google, IJCAI, NeurIPS, ...)

Google



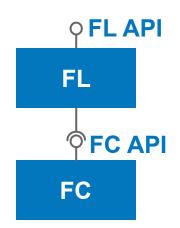


# TensorFlow Federated (TFF) An OSS framework for federated computation on decentralized data

<u>tensorflow.org/federated</u> <u>github.com/tensorflow/federated</u>

# TFF - What's in the box

- Federated Learning (FL)
  - Implementations of federated training/evaluation
  - Can be applied to existing TF models/data
- Federated Core (FC)
  - Allows for expressing new federated algorithms
  - Local runtime for simulations



train\_data = ... # uses tff.simulation.datasets.emnist.load\_data()
model\_fn = lambda: tff.learning.from\_keras\_model( ... )

train = tff.learning.build\_federated\_averaging\_process(model\_fn)

state = train.initialize()
for \_ in range(5):
 state, metrics = train.next(state, train\_data)
 print (metrics.loss)

eval = tff.learning.build\_federated\_evaluation(model\_fn)
metrics = eval(state.model, test\_data)



# TensorFlow Federated (TFF) An OSS framework for federated computation on decentralized data

<u>tensorflow.org/federated</u> <u>github.com/tensorflow/federated</u>