Representing Geometry

* See Watt & Watt chapter 3

- CSG
- Polygons
- Parametric
- Implicit Surfaces
- Subdivision Surfaces

Each has its own strengths & weaknesses:

- ease of use for design
- ease/speed for rendering
- simplicity
- smoothness
- collision detection
- flexibility
- suitability for FEM
- etc...

* No one of these is best at everything.

Parametric Representations

Curve: \(x = x(u) \) \(x \in \mathbb{R}^n \), \(u \in \mathbb{R}^k \)

Surface: \(x = x(u,v) \) \(w \in \mathbb{R} \)

\(x = x(u) \) \(w \in \mathbb{R} \)

Volume: \(x(u,v,w) \) \(w \in \mathbb{R}^3 \)

and so on...

Parametric rep is not unique

\(x = [u, u] \)

or \(x = [2u, 2u] \)

or \(x = [u^2, u^3] \)

[Diff. Geo. Formulae assume normalize param]

or they include normalization

Surface normal: \(\hat{n} = \frac{\partial x \times \partial y x}{||\partial x|| \times ||\partial y||} \)
if \(x \) is any possible curve/surface

\[\Rightarrow \text{hard to represent} \]

\[\Rightarrow \text{How many parameters?} \]

\[\Rightarrow \text{uncountable} \]

\underline{Being Practical:}

\textbf{Step 1 - Pick reasonable/useful subspace}

\textbf{Step 2 - Pick reasonable/useful basis functions}

\[x(u) = \sum_{i=0}^{\infty} c_i \phi_i(u) \]

\[\text{Still in finite number of parameters but countable} \]

\textbf{Step 3 - Truncate sum after finite number of terms}

\textbf{Note:} Could also pick something that is not linear in the \(c_i \) but that makes life hard so we won't do that. (Think about NURBS later on...)

\textbf{Examples}

- Fourier Series \(\Rightarrow \) the \(\phi_i \) are \(\cos/\sin \)
- Polynomials \(\Rightarrow \) the \(\phi_i \) are \(u^i \)

But \(x \in \mathbb{R}^n \mathbb{R}^3 \) (bc. we care about \(\mathbb{R}^3 \) and it's hard to stay generic.)

so let \(c_i \in \mathbb{R}^n \mathbb{R}^3 \)
A Closer look at Polynomials:
\[x(u) = \sum_{i=0}^{d} c_i u^i = c \cdot P^u \]
where \[c = [c_0, c_1, c_2, \ldots, c_d] \]
\[P^u = [1, u, u^2, u^3, \ldots, u^d] \]
\[\phi_i(u) = u^i \]

"Power Basis"
- Elements of \(P^u \) are linearly independent.

\[\Rightarrow \text{no good approx of } u^k \text{ w/ } \sum_{j \neq k} u^j \]

Why use \(u^0, \ldots, u^d \)?
Why not \(u^j \) with \(j = 0, 2, 4, 8 \ldots 2^k \)
or \(u^j \) if \(j \) is first \(k \) primes?

Task: Pick \(c_i \) to generate some useful curve.

Imagine we know \(x(0), x(1), x'(0) \) & \(x'(1) \)
\[\text{\& } d = 3 \text{ (cubic polynomials)} \]

Note:
\[x(0) = c_0 \]
\[x'(0) = c_1 \]
\[x(1) = \sum c_i \]
\[x'(1) = \sum i c_i \]
\[
\begin{bmatrix}
X(0) \\
X(1) \\
X'(0) \\
X'(1)
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 2 & 3
\end{bmatrix}
\begin{bmatrix}
C_0 \\
C_1 \\
C_2 \\
C_3
\end{bmatrix}
\]

\[C_{call} \Rightarrow C = B_H^{-1}p\]

\[p = B_H C \Rightarrow C = B_H^{-1}p\]

\[
P_H = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 2 \\
0 & 0 & -2 & 1
\end{bmatrix}
\]

\[\therefore x(u) = P^3 C = \underbrace{P^3 P_H p}_{p}\]

\[
= \begin{bmatrix}
1 + 5u - 3u^2 + 2u^3 \\
0 + 0u + 2u^2 - 2u^3 \\
0 + 1u - 2u^2 + 1u^3 \\
0 + 0u - 1u^2 + 1u^3
\end{bmatrix}
\]

\[
= \sum_{i=0}^{3} p_i b_i(u)
\]

\[\Rightarrow \text{Look Familiar?} \]

OK, I drew these poorly but you can plot them yourself to see what they look like... .

\[p^5 \text{ These } b_i(u) \text{ are known as the } \text{Hermite Basis}\]
Cubic Bézier

Note: Bézier are related to Bernstein polys, but well talk about that later

Constraints:

\[x(0) = p_0 \quad x'(0) = 3(p_1 - p_0) \]
\[x(1) = p_3 \quad x'(1) = 3(p_3 - p_2) \]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 3 & 0 & 0 \\
0 & 1 & 2 & 3
\end{bmatrix}
\begin{bmatrix}
x(0) \\
x'(0) \\
x(1) \\
x'(1)
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 2 & 3
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
c_3
\end{bmatrix}
\]

\[\Rightarrow \quad c = \begin{bmatrix}
1 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
3 & -3 & 0 & 0 \\
-1 & 3 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
p
\end{bmatrix}
\]

\[\Rightarrow \quad \beta_H \beta_H = \beta_Z \beta_Z \quad \Rightarrow \quad \beta_Z = \beta_Z^{-1} \beta_H \beta_H
\]

* Bézier, Power Basis, & Hermite all span the same space

* Think of FF axes in \(R^3 \) ...
Useful Properties of a Basis

* Convex Hull

\[\sum b_i(u) = 1 \quad \text{and} \quad b_i(u) \geq 0, \quad u \in \mathbb{R} \]

Bézier has this property:

Hermite & Power donut.

(?) Why is this a nice property?

* Invariance under some class of transformation

\[x(u) = \sum p_i b_i(u) \quad \Rightarrow \quad XF(x(u)) = \sum XF(p_i) b_i(u) \]

Bézier invariant under affine \(XF \), but not \(proj \).

Hermite not inv. under either affine or \(proj \).

NURBS are inv. under \(Proj \).

(?) Why nice property?

* Others

- Local support
- Nice subdivision rules - we'll see in few minutes
- Orthogonality is Fourier
- Fast evaluation scheme
- Interpolate vs. approximate
Example of "nice" evaluation scheme for Bézier

De Casteljau Eval.

* Spend 10 minutes & write a program that does this.

Joining

For

\[c' \equiv b - a = c - b \]
\[c' \equiv b - a = c - b \]
\[\| b - a \| \quad \| c - b \| \]

* If you change a, b, or c need to change one of the others as well

* But if you change a, b, or c you don't need to change anything that is not a, b, or c

3 Local support
Tensor Product Surfaces

Surface is the result of sweeping a curve through space

* replace control points \(p_i \) w curves in \(U \)

\[
x(u, v) = \sum_i g_i(u) b_i(u)
\]

* So

\[
x(u, v) = \sum_{ij} p_{ij} b_i(u) b_j(v)
\]

But \(b_{ij}(u, v) = b_i(u) b_j(v) \)

* No different

\[
\text{done } v \text{ then } u \text{ or } u \text{ then } v
\]

**

\[
x(u, v) = \sum_{ij} p_{ij} b_{ij}(u, v)
\]

Tangent vectors

\[
t_u = \frac{\partial x(u, v)}{\partial u} \quad t_v = \frac{\partial x(u, v)}{\partial v}
\]

\[
\mathbf{n} = t_u \times t_v
\]

But things can happen:

\[
x(u, v) = \sum_{ij} U_i U_j v_i v_j
\]

\[
|t_v| = 0 \text{ at } v = 0
\]