CS-184: Computer Graphics

Lecture #10: Raytracing

Prof. James O’Brien
University of California, Berkeley

V2005F-01-0

Today

- Raytracing
 - Shadows and direct lighting
 - Reflection and refraction
 - Antialiasing, motion blur, soft shadows, and depth of field

- Intersection Tests
 - Ray-primitive
 - Sub-linear tests
Light in an Environment

Lady writing a Letter with her Maid
National Gallery of Ireland, Dublin
Johannes Vermeer, 1670

Global Illumination Effects

PCKTWTCH
Kevin Odhner
POV-Ray
Global Illumination Effects

A Philco 6Z4 Vacuum Tube
Steve Anger
POV-Ray

Caustic Sphere
Henrik Jensen
(refraction caustic)
Global Illumination Effects

Caustic Ring
Henrik Jensen
(reflection caustic)

Global Illumination Effects

Sphere Flake
Henrik Jensen
Early Raytracing

Raytracing

- **Scan conversion**
 - $3D \rightarrow 2D \rightarrow Image$
 - Based on transforming geometry
- **Raytracing**
 - $3D \rightarrow Image$
 - Geometric reasoning about light rays
Raytracing

Eye, view plane section, and scene

Launch ray from eye through pixel, see what it hits
Raytracing

Basic tasks

- Build a ray
- Figure out what a ray hits
- Compute shading

Compute color and fill-in the pixel
Building Eye Rays

- Rectilinear image plane build from four points

\[P = u (v_{LL} + (1 - v)U_L) + (1 - u)(v_{LR} + (1 - v)U_R) \]

Building Eye Rays

- Nonlinear projections
 - Non-planar projection surface
 - Variable eye location
Examples

Multiple-Center-of-Projection Images
P. Rademacher and G. Bishop
SIGGRAPH 1998

Examples

Spherical and Cylindrical Projections
Ben Kreunen
From Big Ben’s Panorama Tutorials
Building Eye Rays

- Ray equation
 \[R(t) = E + t(P - E) \]
 \[t \in [1 \ldots +\infty] \]
 - Through eye at \(t = 0 \)
 - At pixel center at \(t = 1 \)

Shadow Rays

- Detect shadow by rays to light source
 \[R(t) = S + t(L - S) \]
 \[t \in [\varepsilon \ldots 1) \]
Shadow Rays

- Test for occluder
 - No occluder, shade normally (e.g. Phong model)
 - Yes occluder, skip light (don’t skip ambient)
- Self shadowing
 - Add shadow bias
 - Test object ID

Reflection Rays

- Recursive shading
 \[R(t) = S + tB \]
 - Ray bounces off object
 - Treat bounce rays (mostly) like eye rays
 - Shade bounce ray and return color
 - Shadow rays
 - Recursive reflections
 - Add color to shading at original point
 - Specular or separate reflection coefficient
Reflection Rays

- Recursion Depth
 - Truncate at fixed number of bounces
 - Multiplier less than J.N.D.

Refracted Rays

- Transparent materials bend light
 - Snell’s Law \(\frac{n_i}{n_t} = \frac{\sin \theta_t}{\sin \theta_i} \) (see clever formula in text...)

\(\sin \theta_t > 1 \iff \text{Total (internal) reflection} \)
Refracted Rays

- Coefficient on transmitted ray depends on θ
 - Schlick approximation to Fresnel Equations
 \[
 k_t(\theta_i) = k_0 + (1 - k_0)(1 - \cos \theta_i)^5
 \]
 \[
 k_0 = \left(\frac{n_t - 1}{n_t + 1} \right)^2
 \]
 - Attenuation
 - Wavelength (color) dependant
 - Exponential with distance

O’Brien and Hodgins, SIGGRAPH 1999
Anti-Aliasing

- Boolean on/off for pixels causes problems
 - Consider scan conversion algorithm:
 - Compare to casting a ray through each pixel center
 - Recall Nyquist Theorem
 - $Sampling \ rate \geq twice \ highest \ frequency$

Anti-Aliasing

- Desired solution of an integral over pixel
“Distributed” Raytracing

- Send multiple rays through each pixel
- Average results together
- Jittering trades aliasing for noise

One Sample
5x5 Grid
5x5 Jittered Grid

“Distributed” Raytracing

- Use multiple rays for reflection and refraction
 - At each bounce send out many extra rays
 - Quasi-random directions
 - Use BRDF (or Phong approximation) for weights

- How many rays?
Soft Shadows

- Soft shadows result from non-point lights
 - Some part of light visible, some other part occluded
Soft Shadows

- Distribute shadow rays over light surface

Figure from S. Chenney
Motion Blur

- Distribute rays over time
 - More when we talk about animation...

Depth of Field

- Distribute rays over a lens assembly
Depth of Field

No DoF

Multiple images for DoF

Jittered rays for DoF

More rays

Even more rays

Other Lens Effects

Kolb, Mitchell, and Hanrahan
SIGGRAPH 1995
Ray -vs- Sphere Test

- Ray equation: $R(t) = A + tD$
- Implicit equation for sphere: $|X - C|^2 - r^2 = 0$
- Combine:
 $|R(t) - C|^2 - r^2 = 0$
 $|A + tD - C|^2 - r^2 = 0$
- Quadratic equation in t

Two solutions
One solution
Imaginary
Ray -vs- Triangle

- Ray equation: \(R(t) = A + tD \)
- Triangle in barycentric coordinates:
 \[
 X(\beta, \gamma) = V_1 + \beta(V_2 - V_1) + \gamma(V_3 - V_1)
 \]
- Combine:
 \[
 V_1 + \beta(V_2 - V_1) + \gamma(V_3 - V_1) = A + tD
 \]
- Solve for \(\beta, \gamma, \) and \(t \)
 - 3 equations 3 unknowns
 - Beware divide by near-zero
 - Check ranges