Today

- 2D Transformations
 - “Primitive” Operations
 - Scale, Rotate, Shear, Flip, Translate
 - Homogenous Coordinates
 - SVD
 - Start thinking about rotations...
Introduction

- **Transformation:**
 An operation that changes one configuration into another

- **For images, shapes, etc.**
 A geometric transformation maps positions that define the object to other positions

 Linear transformation means the transformation is defined by a linear function... which is what matrices are good for.

Some Examples

Images from *Conan The Destroyer, 1984*

- Original
- Uniform Scale
- Rotation
- Nonuniform Scale
- Shear
Mapping Function

\[f(x) = x \text{ in old image} \]

\[c(x) = [195, 120, 58] \quad c'(x) = c(f(x)) \]

Linear -vs- Nonlinear

- **Linear (shear)**
- **Nonlinear (swirl)**

- **Linear (shear)**
Geometric -vs- Color Space

- **Linear Geometric** (flip)
- **Color Space Transform** (edge finding)

Instancing

M.C. Escher, from Ghostscript 8.0 Distribution
Instancing

- Reuse geometric descriptions
- Saves memory

Linear is Linear

- Polygons defined by points
- Edges defined by interpolation between two points
- Interior defined by interpolation between all points
- Linear interpolation
Linear is Linear

- Composing two linear function is still linear
- Transform polygon by transforming vertices

\[f(x) = a + bx \quad g(f) = c + df \]

\[g(x) = c + df(x) = c + ad + bdx \]

\[g(x) = a' + b'x \]
Points in Space

○ Represent point in space by vector in R^n
 ○ Relative to some origin!
 ○ Relative to some coordinate axes!
○ Later we’ll add something extra...

\[
p = [4, 2]^T
\]

Later we’ll add something extra...

Basic Transformations

○ Basic transforms are: rotate, scale, and translate
○ Shear is a composite transformation!
Linear Functions in 2D

\[x' = f(x, y) = c_1 + c_2x + c_3y \]
\[y' = f(x, y) = d_1 + d_2x + d_3y \]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix}
= \begin{bmatrix}
 t_x \\
 t_y
\end{bmatrix} +
\begin{bmatrix}
 M_{xx} & M_{xy} \\
 M_{yx} & M_{yy}
\end{bmatrix}
\cdot
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

\[x' = t + M \cdot x \]

Rotations

\[p' = \begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
\end{bmatrix}
\]
\[p \]

45 degree rotation
Rotations

- Rotations are positive counter-clockwise
- Consistent w/ right-hand rule
- Don’t be different...
- Note:
 - rotate by zero degrees give identity
 - rotations are modulo 360 (or 2π)

Rotations

- Preserve lengths and distance to origin
- Rotation matrices are orthonormal
- $\text{Det}(R) = 1 \neq -1$
- In 2D rotations commute...
 - But in 3D they won’t!
Scales

Uniform/isotropic
Non-uniform/anisotropic

\[p' = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} p \]

Diagonal matrices
- Diagonal parts are scale in X and scale in Y directions
- Negative values flip
- Two negatives make a positive (180 deg. rotation)
- Really, axis-aligned scales

Not axis-aligned...
Shears

Shears are not really primitive transforms

Related to non-axis-aligned scales

More shortly.....
Translation

- This is the not-so-useful way:

\[\text{Translate} \quad p' = p + \begin{bmatrix} t_x \\ t_y \end{bmatrix} \]

Note that it's not like the others.

Arbitrary Matrices

- For everything but translations we have:

\[x' = A \cdot x \]

- Soon, translations will be assimilated as well

- What does an arbitrary matrix mean?
Singular Value Decomposition

- For any matrix, \(\mathbf{A} \), we can write SVD:
 \[
 \mathbf{A} = \mathbf{QSR}^T
 \]
 where \(\mathbf{Q} \) and \(\mathbf{R} \) are orthonormal and \(\mathbf{S} \) is diagonal

- Can also write Polar Decomposition
 \[
 \mathbf{A} = \mathbf{QRSR}^T
 \]
 where \(\mathbf{Q} \) is still orthonormal

Decomposing Matrices

- We can force \(\mathbf{Q} \) and \(\mathbf{R} \) to have \(\text{Det}=1 \) so they are rotations

- Any matrix is now:
 - Rotation:Rotation:Scale:Rotation
 - See, shear is just a mix of rotations and scales
Composition

- Matrix multiplication composites matrices
 \[p' = BAp \]
 “Apply A to p and then apply B to that result.”

 \[p' = B(Ap) = (BA)p = Cp \]

- Several translations composted to one

- Translations still left out...

 \[p' = B(Ap + t) = BAp + Bt = Cp + u \]
Composition

Transformations built up from others

SVD builds from scale and rotations

Also build other ways

i.e. 45 deg rotation built from shears

Homogeneous Coordinates

○ Move to one higher dimensional space

○ Append a 1 at the end of the vectors

\[p = \begin{bmatrix} p_x \\ p_y \end{bmatrix} \quad \tilde{p} = \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix} \]
Homogeneous Translation

\[\tilde{p}' = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix} \]

\[\tilde{p}' = \tilde{A}\tilde{p} \]

The tildes are for clarity to distinguish homogenized from non-homogenized vectors.

Homogeneous Others

\[\tilde{A} = \begin{bmatrix} A & 0 \\ 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Now everything looks the same...
Hence the term “homogenized!”
Compositing Matrices

- Rotations and scales always about the origin
- How to rotate/scale about another point?

Rotate About Arb. Point

- Step 1: Translate point to origin
Rotate About Arb. Point

- Step 1: Translate point to origin
- Step 2: Rotate as desired

Translate (-C)
Rotate (θ)

Rotate About Arb. Point

- Step 1: Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was

Translate (-C)
Rotate (θ)
Translate (C)
Rotate About Arb. Point

- Step 1: Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was

\[\tilde{p}' = (-T)RT\tilde{p} = A\tilde{p} \]
Scale About Arb. Axis

- Diagonal matrices scale about coordinate axes only:

Scale About Arb. Axis

- Step 1: Translate axis to origin
Scale About Arb. Axis

- Step 1: Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired
Scale About Arb. Axis

- Step 1: Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired
- Steps 4&5: Undo 2 and 1 (reverse order)

Order Matters!

- The order that matrices appear in matters
 \[A \cdot B \neq BA \]
- Some special cases work, but they are special
- But matrices are associative
 \[(A \cdot B) \cdot C = A \cdot (B \cdot C)\]
- Think about efficiency when you have many points to transform...
Matrix Inverses

- In general: A^{-1} undoes effect of A
- Special cases:
 - Translation: negate t_x and t_y
 - Rotation: transpose
 - Scale: invert diagonal (axis-aligned scales)
- Others:
 - Invert matrix
 - Invert SVD matrices

Point Vectors / Direction Vectors

- Points in space have a 1 for the “w” coordinate
- What should we have for $a - b$?
 - $w = 0$
 - Directions not the same as positions
 - Difference of positions is a direction
 - Position + direction is a position
 - Direction + direction is a direction
 - Position + position is nonsense
Some things require care.

For example, normals do not transform normally:

\[M(a \times b) \neq (Ma) \times (Mb) \]

\[M(Re) \neq R(Me) \]