Today

- Introduction to Simulation
 - Basic particle systems
 - Time integration (simple version)
Physically Based Animation

- Generate motion of objects using numerical simulation methods

\[x^{t+\Delta t} = x^t + \Delta t \dot{v}^t + \frac{1}{2} \Delta t^2 a^t \]
Particle Systems

- Single particles are very simple
- Large groups can produce interesting effects
- Supplement basic ballistic rules
 - Collisions
 - Interactions
 - Force fields
 - Springs
 - Others...

Karl Sims, SIGGRAPH 1990

Particle Systems

- Single particles are very simple
- Large groups can produce interesting effects
- Supplement basic ballistic rules
 - Collisions
 - Interactions
 - Force fields
 - Springs
 - Others...

Feldman, Klingner, O'Brien, SIGGRAPH 2005
Basic Particles

- Basic governing equation \(\ddot{x} = \frac{1}{m} f \)
 - \(f \) is a sum of a number of things
 - Gravity: constant downward force proportional to mass
 - Simple drag: force proportional to negative velocity
 - Particle interactions: particles mutually attract and/or repel
 - Beware \(O(n^2) \) complexity!
 - Force fields
 - Wind forces
 - User interaction

Properties other than position
- Color
- Temp
- Age

Differential equations also needed to govern these properties

Collisions and other constrains directly modify position and/or velocity
Integration

- Euler’s Method
 - Simple
 - Commonly used
 - Very inaccurate
 - Most often goes unstable

\[
x^{t+\Delta t} = x^t + \Delta t
\]

\[
\dot{x}^{t+\Delta t} = \dot{x}^t + \Delta t
\]

Integration

- For now let’s pretend \(f = mv \)
 - Velocity (rather than acceleration) is a function of force

\[
\dot{x} = f(x, t)
\]

Note: Second order ODEs can be turned into first order ODEs using extra variables.
Integration

- For now let's pretend \(f = mv \)
 - Velocity (rather than acceleration) is a function of force

\[
\dot{x} = f(x, t)
\]

Integration

- With numerical integration, errors accumulate
- Euler integration is particularly bad

\[
x := x + \Delta t f(x, t)
\]
Integration

- **Stability issues can also arise**
 - Occurs when errors lead to larger errors
 - Often more serious than error issues

\[\dot{x} = [-\sin(\omega t), -\cos(\omega t)] \]

Integration

- **Modified Euler**

\[
\begin{align*}
\mathbf{x}^{t+\Delta t} &= \mathbf{x}^t + \frac{\Delta t}{2} (\dot{\mathbf{x}}^t + \dot{\mathbf{x}}^{t+\Delta t}) \\
\dot{\mathbf{x}}^{t+\Delta t} &= \dot{\mathbf{x}}^t + \Delta t \ddot{\mathbf{x}}^t \\
\mathbf{x}^{t+\Delta t} &= \mathbf{x}^t + \Delta t \dot{\mathbf{x}}^t + \frac{(\Delta t)^2}{2} \ddot{\mathbf{x}}^t
\end{align*}
\]

Witkin and Baraff
Integration

- **Midpoint method**
 - a. Compute half Euler step
 - b. Eval. derivative at halfway
 - c. Retake step

- **Other methods**
 - Verlet
 - Runge-Kutta
 - And many others...

- **Implicit methods**
 - Informally (incorrectly) called backward methods
 - Use derivatives in the future for the current step

\[
\begin{align*}
\mathbf{x}^{t+\Delta t} &= \mathbf{x}^t + \Delta t \mathbf{\dot{x}}^{t+\Delta t} \\
\mathbf{\dot{x}}^{t+\Delta t} &= \mathbf{\dot{x}}^t + \Delta t \mathbf{\ddot{x}}^{t+\Delta t}
\end{align*}
\]

\[
\begin{align*}
\mathbf{\dot{x}}^{t+\Delta t} &= \nabla \left(\mathbf{x}^{t+\Delta t}, \mathbf{\dot{x}}^{t+\Delta t}, t + \Delta t \right) \\
\mathbf{\ddot{x}}^{t+\Delta t} &= \mathbf{A}(\mathbf{x}^{t+\Delta t}, \mathbf{\dot{x}}^{t+\Delta t}, t + \Delta t)
\end{align*}
\]
Integration

- Implicit methods
 - Informally (incorrectly) called backward methods
 - Use derivatives in the future for the current step
 \[\dot{x}^{t+\Delta t} = \dot{x}^t + \Delta t \, V(x^{t+\Delta t}, \dot{x}^{t+\Delta t}, t + \Delta t) \]
 \[\dot{x}^{t+\Delta t} = \dot{x}^t + \Delta t \, A(x^{t+\Delta t}, \dot{x}^{t+\Delta t}, t + \Delta t) \]
 - Solve nonlinear problem for \(x^{t+\Delta t} \) and \(\dot{x}^{t+\Delta t} \)
 - This is fully implicit backward Euler
 - Many other implicit methods exist...
 - Modified Euler is partially implicit as is Verlet

Temp Slide

Need to draw reverse diagrams....
Integration

- Semi-Implicit
 - Approximate with linearized equations

\[V(x^{t+\Delta t}, \dot{x}^{t+\Delta t}) \approx V(x^t, \dot{x}^t) + A \cdot (\Delta x) + B \cdot (\Delta \dot{x}) \]

\[A(x^{t+\Delta t}, \dot{x}^{t+\Delta t}) \approx A(x^t, \dot{x}^t) + C \cdot (\Delta x) + D \cdot (\Delta \dot{x}) \]

\[
\begin{bmatrix}
 x^{t+\Delta t} \\
 \dot{x}^{t+\Delta t}
\end{bmatrix}
= \begin{bmatrix}
 x^t \\
 \dot{x}^t
\end{bmatrix} + \Delta t \left(\begin{bmatrix}
 \dot{x}^t \\
 \ddot{x}^t
\end{bmatrix} + \begin{bmatrix}
 A & B \\
 C & D
\end{bmatrix} \begin{bmatrix}
 \Delta x \\
 \Delta \dot{x}
\end{bmatrix} \right)
\]

Integration

- Explicit methods can be conditionally stable
 - Depends on time-step and stiffness of system
- Fully implicit can be unconditionally stable
 - May still have large errors
- Semi-implicit can be conditionally stable
 - Nonlinearities can cause instability
 - Generally more stable than explicit
 - Comparable errors as explicit
 - Often show up as excessive damping
Integration

- Integrators can be analyzed in modal domain
- System have different component behaviors
- Integrators impact components differently

Suggested Reading

- Physically Based Modeling: Principles and Practice
 - Andy Witkin and David Baraff
- Numerical Recipes in C++
 - Chapter 16
- Any good text on integrating ODE's